
Photorealistic Sensor Simulation for
Perception-driven Robotics using Virtual Reality

by

Winter Joseph Guerra
Submitted to the Department of Electrical Engineering and Computer

Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2019

© Massachusetts Institute of Technology 2019. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

Aug 23, 2019

Certified by. .
Sertac Karaman

Associate Professor of Aeronautics and Astronautics
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Photorealistic Sensor Simulation for Perception-driven

Robotics using Virtual Reality

by

Winter Joseph Guerra

Submitted to the Department of Electrical Engineering and Computer Science
on Aug 23, 2019, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract
In recent years, intensive research has centered around using small, perception-driven
robotic systems (e.g. quadrotor vehicles) for complex tasks at operational speeds.
Although much progress has been made towards that end in the fields of online-
planning, fast-perception, and agile-control, most robotic systems are still confined
to controlled laboratory settings due to cost, safety, and repeatability.

In this thesis, we introduce a few novel contributions that we believe could assist
the greater robotics community to bring their robotics systems out of the lab and into
the real world. First, we introduce FlightGoggles, a photorealistic sensor simulator
for perception-driven robotic vehicles. FlightGoggles provides photorealistic extero-
ceptive sensor simulation using graphics assets generated with photogrammetry and
provides the ability to combine synthetic exteroceptive measurements generated in
silico in real time and vehicle dynamics and proprioceptive measurements generated
in motio by vehicle(s) in flight in a motion-capture facility. Second, we present The
Blackbird Dataset, a large-scale dataset for UAV perception in aggressive flight con-
taining over 10 hours of flight data across 171 flights at velocities up to 13.8m s

�1 in
5 environments with some dynamic elements. Third, we introduce a virtual reality
framework for FlightGoggles that enables multi-agent or robot-human interaction in
a safe manner by superimposing position data from multiple motion capture spaces
into a unified virtual reality environment. Fourth, we propose an extension of Flight-
Goggles using augmented reality for aircraft-in-the-loop experiments that aims to aid
sim-to-real transfer from simulated to real-world cameras. Lastly, we study appli-
cations of FlightGoggles in the greater robotics community through the AlphaPilot
autonomous drone racing challenge and survey approaches and results from the top
AlphaPilot teams, which may be of independent interest.

Thesis Supervisor: Sertac Karaman
Title: Associate Professor of Aeronautics and Astronautics

3

4

Acknowledgments

First and foremost, I’d like to thank my advisor Sertac Karaman for his continued

support and guidance. His unbridled excitement and interest toward real-world issues

in robotics is infectious and has helped motivate me to explore a constant stream of

new ideas during my Masters degree. In addition, I’d like to thank him for always be-

ing available when most needed – his guiding voice of reason has helped me overcome

many hurdles over the years.

I’d also like to thank my colleagues at the MIT FAST Lab for their advice, com-

panionship, and assistance during countless late-night paper writing sessions. In

particular, I’d like to thank Varun Murali for his expert knowledge on SLAM and

willingness to humor my outlandish ideas, Thomas Sayre-McCord for introducing me

to the world of robotic academia, Igor Spasojevic for his camaraderie and amazing

ability to disentangle large mathematical systems, Amado Antonini for his help lay-

ing the ground work for The Blackbird Dataset, Ezra Tal for his ability to make

quadrotors do incredible acrobatic feats, Murat Bronz for his encyclopedic knowledge

of aircraft design, Gilhyun Ryou for his assistance with experiments and demos, and

Dave McCoy for his electrical engineering wizardry. Additionally, I’d like to thank

Jin Gao for helping the lab run smoothly and handling my last-minute equipment

requests. My heartfelt gratitude goes to Anne Hunter at the MIT EECS office, who

has been a constant advocate for me. Finally, I’d like to thank my close friends Dong-

Ki Kim, Schuyler Gaillard, Jon Spyreas, Mai Li Goodman, and Diana Wofk for their

kind words of encouragement.

The work in this thesis was supported in part by NVIDIA, MIT Lincoln Labora-

tory, the Office of Naval Research (ONR), and partly by the Army Research Lab’s

DCIST program. Their support is greatly appreciated.

5

6

Contents

1 Introduction 17

1.1 Motivation & Related Work . 17

1.2 Publications . 21

1.3 Contributions . 22

1.4 Organization . 23

2 System Architecture 25

2.1 Overview . 25

2.2 Vehicle In-the-loop Simulation . 26

2.3 Motion Capture Setup . 28

2.4 Time Synchronization . 29

2.5 Dynamic Clock Scaling for Offline Simulation 30

3 Exteroceptive Sensor Simulation 31

3.1 Photorealistic Sensor Simulation using Photogrammetry 31

3.1.1 Photogrammetry Asset Capture Pipeline 33

3.1.2 HD Render Pipeline . 33

3.1.3 Performance Optimizations and System Requirements 34

3.2 Exteroceptive Sensor Models . 36

3.2.1 Camera . 36

3.2.2 Infrared Beacon Sensor . 37

3.2.3 Time-of-flight Range Sensor 37

7

4 Applications 39

4.1 Aircraft-in-the-Loop High-Speed Flight using Visual Inertial Odometry 39

4.1.1 Related Work . 41

4.1.2 UAV System . 42

4.1.3 Experiments . 43

4.2 Perception-aware Planning . 49

4.2.1 Related Work . 50

4.2.2 Experiments . 54

4.3 AlphaPilot Challenge . 59

4.3.1 Challenge Outline . 59

4.3.2 Survey of AlphaPilot Simulation Challenge Results 60

4.4 The Blackbird Dataset: A Large-Scale Dataset for UAV Perception in

Aggressive Flight . 64

4.4.1 Related Work . 67

4.4.2 Data Collection Setup . 68

4.4.3 Dataset Format . 71

4.4.4 Data Validation . 73

4.4.5 Dataset Generation Methodology 74

4.4.6 Benchmarks . 79

4.4.7 Known Issues . 82

4.5 Collision Avoidance of Dynamic Actors Using Online Perception-aware

Planning . 82

4.5.1 Related Work . 83

4.5.2 Proposed Algorithm . 85

4.5.3 Collision Constraint . 87

4.5.4 Implementation . 87

4.5.5 Experiments . 87

4.6 Augmented Reality for Aircraft-in-the-loop Experiments 90

4.6.1 Related Work . 91

4.6.2 Latency Compensation using Homographies 91

8

4.6.3 Experiments . 93

5 Future Work & Conclusions 95

5.1 Dynamic Obstacle and Actor Avoidance using Perception-aware Planning 95

5.2 Sim-to-real Transfer using Augmented Reality 96

5.3 Conclusions . 96

A Tables 97

A.1 Blackbird Dataset Benchmarking Flights 97

B Figures 101

9

10

List of Figures

1-1 FlightGoggles renderings of the Abandoned Factory environment. . . . 19

1-2 Environment renders in various simulation software. 20

2-1 Overview of FlightGoggles system architecture. 27

2-2 Node graph of ROS-version of the FlightGoggles simulation framework. 27

3-1 Object photographs that were used for photogrammetry, and corre-

sponding rendered assets in FlightGoggles. 32

3-2 Texture maps generated using photogrammetry for a scanned barrel. 34

3-3 Rendered camera view with IR marker locations overlaid. 37

4-1 Visual feature tracks using visual inertial odometry on simulated imagery. 40

4-2 VIO experiment using FlightGoggles showing true and est. trajectories. 44

4-3 VIO state estimate error comparison between real on-board camera

and FlightGoggles camera. 46

4-4 VIO estimation error using FlightGoggles across multiple camera pa-

rameters . 47

4-5 Images from VIO flight through window, showing FlightGoggles cam-

era and external view of real-world environment with window. 47

4-6 Aspects of visual-inertial navigation. Observations of landmarks are

acquired at discrete time intervals over a continuous trajectory. 51

4-7 Diagram of how perception-aware planning can increase state-estimation

performance in certain environments. 51

4-8 Render of environment used for perception-aware planning experiments. 55

11

4-9 Optimized trajectory generated by the proposed algorithm using per-

ceptual constraints. 57

4-10 Comparison of VIO drift between reference trajectory and optimized

yaw trajectory at 2.7m s
�1. 58

4-11 Racecourse layout for the AlphaPilot simulation challenge. 59

4-12 Speed profiles and crash locations for top 20 AlphaPilot teams. 61

4-13 Statistics of race performance by each of the top 20 AlphaPilot teams. 63

4-14 Image of Blackbird UAV and diagram of coordinate frames 69

4-15 Derivative of position and rotational ground truth data compared with

accelerometer and gyroscope data for a flight at 4m s
�1. 72

4-16 Tracking precision while flying the same trajectory at speeds of 1 to

4m s
�1 . 73

4-17 Diagrams of trajectory paths included in this dataset. 76

4-18 Five rendering environments used in the dataset to generate visual data. 76

4-19 Camera image feeds provided in the pre-rendered dataset. 78

4-20 VINS-Fusion against the ground truth for the ‘Ampersand’ trajectory

flown at 1m s
�1 and constant yaw in the environment ‘Small Apartment’. 79

4-21 Performance graph of VIN-Fusion and ORB-SLAM on 33 Blackbird

Dataset flights. 80

4-22 Average performance of VINS, VINS-IMU, and ORB-SLAM on suc-

cessfully tracked flights, separated by difficulty. 81

4-23 Demo of dynamic human actor in the FlightGoggles virtual environment. 83

4-24 Experiment of avoidance of a dynamic actor holding a virtual prop

using perception-aware planning. 84

4-25 Dynamic actor using VR to interact with a drone in flight using a

virtual prop held by the actor. 84

4-26 Diagram of collision constraint with dynamic obstacle. 88

4-27 VIO tracked feature statistics from a flight using online perception-

aware planning using only the VIO pointcloud. 89

12

4-28 Six images captured with UAV on-board camera with augmented real-

ity overlay from FlightGoggles displaying effect of latency compensation. 93

B-1 Blackbird dataset file hierarchy. 101

13

14

List of Tables

3.1 Quality settings for the Abandoned Factory environment. 35

3.2 Default camera sensor parameters enabled in FlightGoggles. 36

4.1 Comparison of average number of tracked features between keyframes

for forward facing and perception optimized yaw trajectories. 56

4.2 The average absolute trajectory error statistics over 3 trials of the

trajectory are shown in the above table. 58

4.3 Sensor usage, algorithm choices, and team scores in AlphaPilot challenge. 62

4.4 Sensor package usage and course performance for top AlphaPilot teams. 62

4.5 UAV visual inertial datasets comparison 65

4.6 Quadrotor characteristics . 69

4.7 Blackbird Dataset Flights . 74

4.8 The color scheme used in that dataset for the 22 provided semantic

labels. 78

A.1 Blackbird Dataset flights of category ‘Easy’ used for benchmarking. . 98

A.2 Blackbird Dataset flights of category ‘Medium’ used for benchmarking. 99

A.3 Blackbird Dataset flights of category ‘Hard’ used for benchmarking. . 100

15

16

Chapter 1

Introduction

1.1 Motivation & Related Work

Simulation systems have long been an integral part of the development of robotic

vehicles. They allow engineers to identify errors early on in the development process,

and allow researchers to rapidly prototype and demonstrate their ideas. Despite

their success in accelerating development, many researchers view results generated in

simulation systems with skepticism, as any simulation system is some abstraction of

reality and will disagree with reality at some scale. This skepticism towards results

generated exclusively in simulations studies is exemplified by Rodney Brooks’ well-

known quote from 1993: “[experiment] simulations are doomed to succeed ... [because]

simulations cannot be made sufficiently realistic”[1].

Despite the skepticism towards simulation results, several trends have emerged in

recent years that have driven the research community to develop better simulation

systems out of necessity. A major driving trend towards realistic simulators stems

from the emergence of data-driven algorithmic methods in robotics, for instance,

based on machine learning methods that require extensive data. Simulation systems

provide not only massive amounts of data, but also the labels required for training

algorithms. For example, simulation systems can provide a safe environment for

learning from experience useful for reinforcement learning methods [2], [3]. This

driving trend has posed a critical need to develop better, more realistic simulation

17

systems.

Several enabling trends have also recently emerged that allow for better, more-

realistic simulation systems to be developed. The first enabling trend is the develop-

ment of new computing resources that enable realistic rendering. The rapid evolution

of game engine technology, particularly 3D graphics rendering engines, has made

available advanced features such as improved material shaders, real-time reflections,

volumetric lighting, and advanced illumination through deferred rendering pipelines.

Particularly, the maturation of off-the-shelf software packages such as Unreal En-

gine [4] and Unity [5], makes them suitable for high-fidelity rendering in applications

beyond video games, such as robotics simulation. Simultaneously, next-generation

graphics processors simply pack more transistors, and the transistors are better or-

ganized for rendering purposes, e.g., for real-time ray tracing. In addition, they

incorporate computation cores that utilize machine learning, for instance, trained

with pictures of real environments to generate realistic renderings [6]. This trend

is an opportunity to utilize better software and hardware to realize realistic sen-

sor simulations. The second enabling trend stems from the proliferation of motion

capture facilities for robotics research, enabling precise tracking of robotic vehicles

and humans through various technologies, such as infrared cameras, laser tracking,

and ultra-wide band radio. These facilities provide the opportunity to incorporate

real motion and behavior of vehicles and humans into the simulation in real time.

This trend provides the potential to combine the efficiency, safety, and flexibility of

simulation with real-world physics and agent behavior.

Traditionally, simulation systems embody “models” of the vehicles and the envi-

ronment, which are used to emulate what the vehicles sense, how they move, and how

their environment adapts. In this paper, we present two concepts that use “data” to

drive realistic simulations. First, we heavily utilize photogrammetry to realistically

simulate exteroceptive sensors. For this purpose, we photograph real-world objects,

and reconstruct them in the simulation environment. Almost all objects in our sim-

ulation environment are, in fact, a rendering of a real-world object. This approach

allows realistic renderings, as shown in Fig. 1-1. Second, we utilize a novel virtual-

18

Figure 1-1: FlightGoggles renderings of the Abandoned Factory environment, designed
for autonomous drone racing. Note the size of the environment and the high level of
detail.

reality system to realistically embed inertial sensors, vehicles dynamics, and human

behavior into the simulation environment. Instead of modeling these effects, we place

vehicles and human actors in motion-capture facilities. We acquire the pose of the ve-

hicles and the configuration of the human actors in real time, and create their avatars

in the simulation environment. For each autonomous vehicle, its proprioceptive mea-

surements are acquired using on-board sensors, e.g., inertial measurement units and

odometers, and exteroceptive sensors are rendered photorealistically in real time. In

addition, the human behavior observed by the vehicles is generated by humans re-

acting to the simulation. In other words, vehicles embedded in the FlightGoggles

simulation system experience real dynamics, real inertial sensing, real human be-

havior, and synthetic exteroceptive sensor measurements rendered photorealistically

effectively by transforming photographs of real-world objects.

The combination of real physics and data-driven exteroceptive sensor simulation

that FlightGoggles provides is not achieved in traditional simulation systems. Such

systems are typically built around a physics engine that simulates vehicles and the

environment based on a “model”, most commonly a system of ordinary or partial dif-

ferential equations. While these models may accurately exemplify the behavior of a

general vehicle or actor, this is not sufficient to ensure that simulation results transfer

to the real world. Complicated aspects of vehicle dynamics, e.g., vibrations and un-

steady aerodynamics, and of human behavior may significantly affect results, but can

be very challenging to accurately capture in a physics model. For an overview of pop-

19

(a) ETHz RotorS (b) Microsoft AirSim

(c) FlightGoggles

Figure 1-2: Environment renders in various simulation software.

ular physics engines, the reader is referred to [7]. In order to generate exteroceptive

sensor data, robotics simulators employ a graphics rendering engine in conjunction

with the physics engine. A popular example is Gazebo [8], which lets users select

various underlying engines. It is often used in combination with the Robot Operat-

ing System (ROS) to enable hardware-in-the-loop simulation. However, Gazebo is

generally not capable of photorealistic rendering. Specifically, for unmanned aerial

vehicles simulation, two popular simulators that are built on Gazebo are the Hector

Quadrotor package [9] and RotorS [10]. Both simulators include vehicle dynamics and

exteroceptive sensor models, but lack the capability to render photorealistic camera

streams. AirSim, on the other hand, is purposely built on the Unreal rendering engine

to enable rendering of photorealistic camera streams from autonomous vehicles, but

still suffers from the shortcomings of typical physics engines when it comes to vehicle

dynamics and inertial measurements [11]. Fig. 1-2 shows a comparison of photoreal-

ism in some of the aforementioned simulators. It serves to highlight the shift towards

using video game rendering engines to improve realism in robotics simulation.

The rise of data-driven algorithms for autonomous robotics, has bolstered the

20

need for extensive labeled data sets. Simulation offers an alternative to experimen-

tal data gathering. Clearly, there are many advantages to this approach, e.g., cost

efficiency, safety, repeatability, and essentially unlimited quantity and diversity. In

recent years, several synthetic, or virtual, datasets have appeared in literature. For

example, Synthia [12] and Virtual KITTI [13] use Unity to generate photorealistic

renders of an urban environment, and ICL-NUIM [14] provides synthetic renderings

of an indoor environment based on pre-recorded handheld trajectories. The Blackbird

Dataset [15] includes real-world ground truth and inertial measurements of a quadro-

tor in motion capture, and photorealistic camera imagery rendered in FlightGoggles.

The open-source availability of FlightGoggles and its photorealistic assets enables

users to straightforwardly generate additional data, including real-time photorealistic

renders based on real-world vehicles and actors.

1.2 Publications

While fulfilling the Master of Engineering requirements at MIT, the author of this

thesis has co-authored the following papers. Excerpts of the papers below have been

included in this thesis with permission from the authors.

1. A. Antonini*, W. Guerra*, V. Murali, T. Sayre-McCord, and S. Karaman,

“The Blackbird UAV Dataset,” The International Journal of Robotics Research

(IJRR), 2019 (Invited Paper. Submitted for review.) [16]

2. W. Guerra, E. Tal, V. Murali, G. Ryou, and S. Karaman, “Flightgoggles: Photo-

realistic sensor simulation for perception-driven robotics using photogrammetry

and virtual reality,” in IEEE International Conference on Intelligent Robots and

Systems (IROS), 2019. [17]

3. V. Murali, I. Spasojevic, W. Guerra, and S. Karaman, “Perception-aware tra-

jectory generation for aggressive quadrotor flight using differential flatness,” in

American Control Conference (ACC), 2019. [18]
⇤Both authors contributed equally to this work.

21

4. A. Antonini, W. Guerra, V. Murali, T. Sayre-McCord, and S. Karaman, “The

Blackbird dataset: A large-scale dataset for UAV perception in aggressive flight,”

in International Symposium on Experimental Robotics (ISER), 2018. [15]

5. T. Sayre-McCord, W. Guerra, A. Antonini, J. Arneberg, A. Brown, G. Cav-

alheiro, Y. Fang, A. Gorodetsky, D. McCoy, S. Quilter, F. Riether, E. Tal, Y.

Terzioglu, L. Carlone, and S. Karaman, “Visual-inertial navigation algorithm

development using photorealistic camera simulation in the loop,” in IEEE In-

ternational Conference on Robotics and Automation (ICRA), 2018, pp. 2566–

2573. [19]

1.3 Contributions

1. A novel, open-source simulation framework FlightGoggles for vehicle in-the-loop

simulation using virtual reality for development and testing of perception-driven

robotics applications. A plug-and-play ROS framework for in silico quadrotor

simulation is also provided (see Chapter 2).

2. A high-definition, open-source Unity3D Abandoned Factory environment cap-

tured using photogrammetry for robotics development (see Section 3.1). The

included environment contains over 40 million triangles and 1,050 object in-

stances of 84 unique models captured with photogrammetry.

3. A large-scale dataset for UAV perception in aggressive flight containing over

10 hours of flight data across 171 flights at velocities up to 13.8m s
�1 in 5

environments with static and dynamic environmental elements (see Section 4.4).

4. An overview of the simulation-phase of the AlphaPilot autonomous drone racing

challenge (see Section 4.3). A survey of approaches and results from the top

AlphaPilot teams is also provided (see Section 4.3.2).

5. Real-world comparison experiments using FlightGoggles and a UAV with a

Point Grey Flea3 monochrome camera verify VIO results from the FlightGog-

22

gles aircraft-in-the-loop simulator was comparable to results using a real camera

for visual state estimation (see Section 4.1).

6. Aircraft-in-the-loop experiments using FlightGoggles validate the use of Perception-

aware trajectory generation methods for improving visual state estimation in

environments with non-uniform distribution of visual features (see Section 4.2).

7. A virtual reality framework for FlightGoggles that enables multi-agent or robot-

human interaction in a safe manner by superimposing position data from mul-

tiple motion capture spaces into a unified virtual reality environment (see Sec-

tion 4.5).

8. An augmented reality framework for FlightGoggles allowing for seamless tran-

sition between simulation and real-world experiments. We introduce an offline

proof-of-concept experiment using real-world flight data and a UAV equipped

with a real camera (see Section 4.6).

1.4 Organization

This thesis is organized as follows. Chapter 2 provides an overview of the Flight-

Goggles system architecture, including interfacing with real-world vehicles and ac-

tors in motion capture facilities. Chapter 3 outlines the photogrammetry process

and the resulting virtual environment. Chapter 3 also details the features of the

rendering pipeline used in FlightGoggles and the exteroceptive sensor models avail-

able. Chapter 4 describes several applications of FlightGoggles for perception-driven

robotics. These applications include high-speed visual state estimation (see Sec-

tion 4.1), perception-aware planning (see Section 4.2), the AlphaPilot autonomous

drone racing challenge (see Section 4.3), large-scale datasets (see Section 4.4, and

safe interactions with dynamic environmental elements and actors (see Section 4.5).

Chapter 5 summarizes the thesis and the contributions introduced and suggests direc-

tions for future exploration using FlightGoggles, particularly by leveraging augmented

reality for seamless sim-to-real transfer of robotic algorithms.

23

24

Chapter 2

System Architecture

2.1 Overview

FlightGoggles is based on a modular architecture, as shown in Fig. 2-1. This archi-

tecture provides the flexibility to tailor functionality for a specific simulation scenario

involving real and/or simulated vehicles, and possibly human interactors. As shown

in the figure, FlightGoggles’ central component is the Unity game engine. It utilizes

position and orientation information to simulate camera imagery and exteroceptive

sensors, and to detect collisions. Collision checks are performed using polygon collid-

ers, and results are output to be included in the dynamics of simulated vehicles.

Simulation scenarios may also include real-world vehicles through the use of a

motion capture system. In this case, Unity simulation of camera figures and extero-

ceptive sensors, and collision detection are based on the real-world vehicle position

and orientation. This type of vehicle-in-the-loop simulation can be seen as an ex-

tension of customary hardware-in-the-loop configurations. It not only includes the

vehicle hardware, but also the actual physics of processes that are challenging to sim-

ulate accurately, such as aerodynamics (including effects of turbulent air flows), and

inertial measurements subject to vehicle vibrations. FlightGoggles provides the novel

combination of real-life vehicle dynamics and proprioceptive measurements, and sim-

ulated photorealistic exteroceptive sensor simulation. It allows for real-life physics,

flexible exteroceptive sensor configurations, and obstacle-rich environments without

25

the risk of actual collisions. FlightGoggles also allows scenarios involving both hu-

mans and vehicles, colocated in simulation but placed in different motion capture

rooms, e.g., for safety.

Dynamics states, control inputs, and sensor outputs of real and simulated vehi-

cles, and human interactors are available to the user through the FlightGoggles API.

In order to enable message passing between FlightGoggles nodes and the API, the

framework can be used with either ROS [20] or LCM [21]. The FlightGoggles sim-

ulator can be run headlessly on an Amazon Web Services (AWS) cloud instance to

enable real-time simulation on systems with limited hardware.

Dynamic elements, such as moving obstacles, lights, vehicles, and human actors,

can be added and animated in the environment in real-time. Using these added

elements, users can change environment lighting or simulate complicated human-

vehicle, vehicle-vehicle, and vehicle-object interactions in the virtual environment.

In Section 4.5, we describe an use case involving a dynamic human actor. In this

scenario, skeleton tracking motion capture data is used to render a 3D model of the

human in the virtual FlightGoggles environment. The resulting render is observed in

real-time by a virtual camera attached to a quadrotor in real-life flight in a different

motion capture room (see Fig. 4-23).

Much of the work presented in this chapter has been published in International

Conference on Intelligent Robots and Systems (IROS) in 2019 [17] and in the Inter-

national Robotics and Automation Conference (ICRA) in 2018 [19].

2.2 Vehicle In-the-loop Simulation

Simulation of images through the FlightGoggles framework is enabled via a ground

station computer featuring an NVIDIA RTX8000 GPU for rapid rendering of images

based on the motion capture location of the UAV. The simulation of imagery is per-

formed by creating an environment in Unity that contains a virtual world for the

UAV, and one or more camera objects which are attached to a ZeroMQ (ZMQ) [22]

socket. Over ZMQ, the various parameters of the camera may be set, most impor-

26

Figure 2-1: Overview of FlightGoggles system architecture. Pose data of real and
simulated vehicles, and human interactors is used by the Unity rendering engine.
Detected collision can be incorporated in simulated vehicle dynamics, and rendered
figures can be displayed in a VR headset. All dynamics states, control inputs, and
sensor outputs of real and simulated vehicles, and human interactors are available
through the FlightGoggles API.

Inputs

tf

Sensor Outputs

Simulation Output

Camera Outputs

FlightGoggles System

stereo_image_proc

/uav/input/rateThrust

/uav/flightgoggles_uav_dynamics/uav/collision

/tf

/uav/sensors/imu

/clock

/uav/flightgoggles_ros_bridge/tf_static

/uav/sensors/downward_laser_rangefinder

/uav/collision

/uav/camera/debug/fps

/bounding_box_camera/RGB

/uav/camera/{left,right}/image_rect_color

/uav/flightgoggles_marker_visualizer

/uav/camera/stereo_image_proc

/uav/camera/{left,right}/camera_info

/uav/camera/{left,right}/ir_beacons

/uav/camera/disparity

/uav/flightgoggles_renderer
ZMQZMQ

Figure 2-2: Node graph of ROS-version of the FlightGoggles simulation framework.

27

tantly the camera pose can be set in real time based on the motion capture position

of the UAV. For each pose of the camera received, the Unity camera object returns a

timestamped image of the virtual reality environment as it would be seen from that

pose (see Fig. 2-1). Because of the networking limitations of sending full images wire-

lessly to the UAV, for our VIO state estimation experiments using simulated imagery,

the vision front-end is executed on the ground station computer at a speed that the

on-board GPU can execute, and only feature data is sent wirelessly to the UAV for

state estimation. The total delay in receiving visual data on the UAV (rendering

and wireless transmission) is primarily Gaussian around 37±8 ms with 1.3% outliers

above two standard deviations due to wireless network bottlenecks. For comparison,

the time from image acquisition to processed data with our live camera is 15± 5 ms.

While our image simulation system may be used for traditional Hardware in the

Loop (HiL) simulations (simulated dynamics and inertial measurements with real

decision making) or with logged data from a real UAV (real dynamics and inertial

measurements, pre-determined decisions), it was implemented with the intention of

running in real time while the UAV is in the air for Photorealistic (exteroceptive)

sensor simulation in the Loop (real dynamics and inertial measurements, online de-

cision making). By running all systems in real time the vehicle-in-the-loop system

comes as close as possible to a real camera running on-board the UAV, allowing visual

algorithms to be used in the decision making loop.

2.3 Motion Capture Setup

For vehicle-in-the-loop simulations, an OptiTrack motion capture room is used for

estimating the ground truth pose of the UAV in flight. For all works presented

in this thesis, OptiTrack Prime 17W cameras were used at either 120Hz or (more

commonly) 360Hz with millimeter-accurate calibration. On the UAV, four motion

capture balls are placed in a square aligned with X, Y axis of the on-board IMU and

help automate axis alignment of the motion-capture rigid body with the on-board

IMU (see Figure 4-14 for an example implementation).

28

2.4 Time Synchronization

For most vision-based experiments, accurate and consistent timestamping of camera

images is paramount. To ensure accurate timestamping of rendered images, the sys-

tem clocks of motion capture computer, the ground station computer, and the UAV

must be synchronized. We use Chrony[23] to automatically synchronize the system

clocks of the UAV to the ground station computer, with an average deviation that is

sub-microsecond. Due to operating system restrictions that conflict with Chrony, we

perform a different estimation technique to synchronize the timestamps of the mo-

tion capture camera exposures with the system clock of the ground station computer

which uses leverages latency statistics exposed by the motion capture system.

During vehicle-in-the-loop experiments, ground truth pose data of the UAV in

flight is captured by the motion capture cameras at time t
(i)
mocap, where t

(i)
mocap is the

time in nanoseconds of the middle of the motion capture camera exposure at frame i

with respect to the system clock of motion capture computer. Using latency statistics

from the motion capture system, we estimate the constant clock offset between the

motion capture computer and the ground station �t
mocap
groundstation. Using this offset, we

derive the actual timestamp for each given motion capture frame with respect to the

ground station computer t(i)groundstation = t
(i)
mocap+�t

mocap
groundstation, which is equal to t

(i)
UAV

through clock synchronization using Chrony.

After the motion capture pose enters the FlightGoggles system, FlightGoggles

keeps track of the original exposure time t
(i)
UAV for each render request throughout the

sensor simulation pipeline. Thus, each rendered image output from FlightGoggles is

timestamped using t
(i)
UAV , the timestamp of the ground truth pose from which this

frame was rendered. Using cross-correlation from a 100Hz IMU, we have noted that

this method of timestamping is accurate to within ±5ms, which is less than one IMU

datapoint and provides validation for the synchonization method used.

29

2.5 Dynamic Clock Scaling for Offline Simulation

FlightGoggles provides optional dynamic clock scaling to guarantee a nominal cam-

era frame rate in simulation time, even on rendering hardware that is incapable of

achieving reliable real-time frame rates. When automatic clock scaling is enabled,

FlightGoggles monitors the frame rate of the renderer output and dynamically ad-

justs the ROS simulation time to achieve the desired nominal frame rate in simulation

time. Since the built-in ROS time framework is used, changes in time rate do not

affect the relative timing of client nodes, which alleviates non-deterministic timing

issues across simulation runs.

30

Chapter 3

Exteroceptive Sensor Simulation

This section describes the creation of the environment using photogrammetry, lists the

features of the render pipeline, and describes each of the exteroceptive sensor mod-

els. Much of the work presented in this chapter has been published in International

Conference on Intelligent Robots and Systems (IROS) in 2019 [17].

FlightGoggles provides a simulation environment with exceptional visual fidelity.

Its high level of photorealism is achieved using 84 unique 3D models captured from

real-world objects using photogrammetry, as can be seen in Fig. 3-1. The resulting

environment is comprised of over 40 million triangles and 1,050 object instances. To

achieve this level of environmental detail, we leverage photogrammetry to model the

individual components of the environment, the process of which is explained in detail

in the following section.

3.1 Photorealistic Sensor Simulation using Photogram-

metry

Photogrammetry is the process in which multiple photographs of a real-world object

from different viewpoints are used to efficiently construct a realistic high-resolution

3D model for use in virtual environments. This technique has two major advantages

when compared to traditional 3D modeling techniques. Firstly, it requires virtually

31

(a) Virtual environment in FlightGoggles with barrel (red), rubble (blue), corrugated metal
(magenta), and caged tank (green).

(b) Photograph of
barrel.

(c) Photograph of
rubble.

(d) Photograph of
corrugated metal.

(e) Photograph of
caged tank.

(f) Rendered image
of barrel.

(g) Rendered image
of rubble.

(h) Rendered image
corrugated metal.

(i) Rendered image
of caged tank.

Figure 3-1: Object photographs that were used for photogrammetry, and correspond-
ing rendered assets in FlightGoggles.

32

no manual modeling and texturing. The elimination of these time-consuming and ar-

tistically demanding processes enables the creation of many high-resolution assets in a

relatively short time and at a more moderate cost. Secondly, the resulting renderings

are based directly on real-world data, i.e., photographs. Consequently, the simula-

tion includes a photorealistic representation of the real-world object that is being

modeled, which may be critical in robotics applications. Due to its advantages over

traditional modeling methods, photogrammetry is already widely used in the video

game industry; however, its application towards photorealistic robotics simulation, as

introduced in FlightGoggles, is novel.

3.1.1 Photogrammetry Asset Capture Pipeline

Photogrammetry was used to create 84 unique open-source 3D assets for the Flight-

Goggles environment. These assets are based on thousands of high-resolution digi-

tal photographs of real-world objects and environmental elements, such as walls and

floors. The digital images were first color-balanced, and then combined to reconstruct

object meshes using the GPU-based reconstruction software Reality Capture [24]. Af-

ter this step, the raw object meshes were manually cleaned to remove reconstruction

artifacts. Mesh baking was performed to generate base color, normal, height and am-

bient occlusion maps for each object; which are then combined into one high-definition

surface material in Unity3D. For a detailed overview of a typical photogrammetry

capture workflow, we refer the reader to [25]. Fig. 3-2 shows maps generated using

photogrammetry for the scanned barrel object in Fig. 3-1b.

3.1.2 HD Render Pipeline

Fig. 3-1 shows several 3D assets that were generated using the process described

above. The figure also shows examples of real-world reference imagery that was used

in the photogrammetry process to construct these assets. To achieve photorealistic

RGB camera rendering, FlightGoggles uses the Unity Game Engine High Definition

Render Pipeline (HDRP) [26]. Using HDRP, cameras rendered in FlightGoggles have

33

(a) Base color map. (b) Normal map. (c) Ambient occlusion map.

Figure 3-2: Texture maps generated using photogrammetry for the scanned barrel
asset in Fig. 3-1b.

characteristics similar to those of real-world cameras including motion blur, lens dirt,

bloom, real-time reflections, and precomputed ray-traced indirect lighting. Additional

camera characteristics such as chromatic aberration, vignetting, lens distortion, and

depth of field can be enabled in the simulation environment.

3.1.3 Performance Optimizations and System Requirements

Extensive performance and memory optimizations were performed to ensure that

FlightGoggles is able to run on a wide spectrum of GPU rendering hardware with

� 2GB of video random access memory (VRAM). As can be seen in Table 3.1,

FlightGoggles VRAM and GPU computation requirements can be reduced further

by user-selectable quality profiles based on three major settings: real-time reflec-

tions, maximum object texture resolution, and maximum level of detail (i.e. polygon

count).

Mesh level of detail

For each object mesh in the environment, three meshes with different levels of detail

(LOD), i.e., polygon count and texture resolution, were generated: low, medium, and

high. For meshes with lower levels of detail, textures were downsampled using sub-

sampling and subsequent smoothing. During simulation, the real-time render pipeline

34

Ve
ry
Lo
w2
GB

Lo
w2
GB

Me
di
um

Hi
gh

(D
efa

ult
)

Ve
ry
Hi
gh

Ul
tr
a

Mono VRAM Usage 1.45 GB 1.56 GB 1.73 GB 4.28 GB 4.28 GB 4.28 GB
Stereo VRAM Usage 2.00 GB 2.07 GB 2.30 GB 4.97 GB 4.97 GB 4.97 GB
Texture Resolution 1/8 1/4 1/2 1 1 1
Realtime Reflections - - -
Max Level of Detail Low Medium High High High High

Table 3.1: Quality settings for the Abandoned Factory environment.

improves render performance by selecting the appropriate level of detail object mesh

and texture based on the size of the object mesh in camera image space. Users can

also elect to decrease GPU VRAM usage by capping the maximum level of detail to

use across all meshes in the environment using the quality settings in Table 3.1.

Pre-baked ray traced lighting

To save run-time computation, all direct and indirect lighting, ambient occlusions,

and shadow details from static light sources are pre-baked via NVIDIA RTX raytrac-

ing into static lightmaps and are layered onto object meshes in the environment. To

precompute the ray traced lighting for each lighting condition in the Abandoned Ware-

house environment, an NVIDIA Quadro RTX 8000 GPU was used with an average

bake time of 45 minutes per lighting arrangement.

Render batching

In order to increase render performance by reducing individual GPU draw calls,

FlightGoggles leverages two different methods of render batching according to the

capabilities available in the rendering machine. For Windows-based systems support-

ing DirectX11, FlightGoggles leverages Unity3D’s experimental Scriptable Render

Pipeline dynamic batcher, which drastically reduces GPU draw calls for all static and

dynamic objects in the environment. For Linux and MacOS systems, FlightGoggles

statically batches all static meshes in the environment. Static batching drastically in-

35

Camera Parameter Default Value

Vertical Field of View (fov) 70
�

Image Resolution (w ⇥ h) 1024 px ⇥ 768 px
Stereo Baseline (t) 32 cm

Table 3.2: Camera sensor parameters enabled by default in FlightGoggles along with
their default values.

creases render performance, but also increases VRAM usage in the GPU as all meshes

must be combined and preloaded onto the GPU at runtime. To circumvent this issue,

FlightGoggles exposes quality settings to the user (see Table 3.1) that can be used to

lower VRAM usage for systems with low available VRAM.

3.2 Exteroceptive Sensor Models

FlightGoggles is capable of high-fidelity simulation of various types of exteroceptive

sensors, such as RGB-D cameras, time-of-flight distance sensors, and infrared radia-

tion (IR) beacon sensors. Default noise characteristics, and intrinsic and extrinsic pa-

rameters are based on real sensor specifications, and can easily be adjusted. Moreover,

users can instantiate multiple instances of each sensor type. This capability allows

quick prototyping and evaluation of distinct exteroceptive sensor arrangements.

3.2.1 Camera

The default camera model provided by FlightGoggles is a perfect, i.e., distortion-

free, camera projection model with optional motion blur, lens dirt, auto-exposure,

and bloom. Table 3.2 lists the major camera parameters exposed by default in the

FlightGoggles API along with their default values. These parameters can be changed

via the FlightGoggles API using ROS param or LCM config. The camera extrinsics

T
b
c where b is the vehicle fixed body frame and c is the camera frame can also be

changed in real-time.

36

Figure 3-3: Rendered camera view (faded) with IR marker locations overlaid. The
unprocessed measurements and marker IDs from the simulated IR beacon sensor
are indicated in red. The measurements are verified by comparison to image-space
reprojections of ground-truth IR marker locations, which are indicated in green. Note
that IR markers can be arbitrarily placed by the user, including on dynamic objects.

3.2.2 Infrared Beacon Sensor

To facilitate the quick development of guidance, navigation, and control algorithms;

an IR beacon sensor model is included. This sensor provides image-space u, v mea-

surements of IR beacons in the camera field of view. The beacons can be placed at

static locations in the environment or on moving objects. Using real-time ray-casting

from each RGB camera, simulated IR beacon measurements are tested for occlusion

before being included in the IR sensor output. Fig. 3-3 shows a visual representation

of the sensor output.

3.2.3 Time-of-flight Range Sensor

FlightGoggles is able to simulate (multi-point) time-of-flight range sensors using ray

casts in any specified directions. In the default vehicle configuration, a downward-

facing single-point range finder for altitude estimation is provided. The noise char-

acteristics of this sensor are similar to the commercially available LightWare SF11/B

laser altimeter [27].

37

38

Chapter 4

Applications

In this section, we discuss application that FlightGoggles has been used for and po-

tential future applications. Potential applications of FlightGoggles include: human-

vehicle interaction, active sensor selection, multi-agent systems, visual inertial navi-

gation research for fast and agile vehicles [15], [18], [19]. The FlightGoggles simulator

was used for the simulation part of the AlphaPilot challenge [28].

4.1 Aircraft-in-the-Loop High-Speed Flight using Vi-

sual Inertial Odometry

Much of the work presented in this section has been published in The International

Robotics and Automation Conference (ICRA) in 2018 [19].

Camera-IMU sensor packages are widely used in both commercial and research

applications, because of their relatively low cost and low weight. Particularly in

GPS-denied environments, cameras may be essential for effective state estimation.

Visual inertial odometry (VIO) algorithms combine camera figures with preintegrated

IMU measurements to estimate the vehicle state [19], [29]. While these algorithms

are often critical for safe navigation, it is challenging to verify their performance

in varying conditions. Environment variables, e.g., lighting and object placement,

and camera properties may significantly affect performance, but generally cannot

39

Figure 4-1: The figure on the left shows the visual features tracked using a typical
visual inertial odometry pipeline on the simulated camera imagery. On the right,
the plot shows three drones, the ground truth trajectory is in green, the high-rate
estimate is in red, and the smoothed estimate is in blue. The red squares indicate
triangulated features in the environment.

easily be varied in reality. For example, to show robustness in visual simultaneous

localization and mapping may require data collected at different times of day or even

across seasons [30], [31]. Moreover, obstacle-rich environments may increase the risk

of collisions, especially in high-speed flight, further increasing the cost of extensive

experiments.

FlightGoggles allows us to change environment and camera parameters and thereby

enables us to quickly verify VIO performance over a multitude of scenarios, without

the risk of actual collisions. By connecting FlightGoggles to a motion capture room

with a real quadrotor in flight, we are able to combine its photo-realistic rendering

with true flight dynamics and inertial measurements. This alleviates the necessity

of complicated models including unsteady aerodynamics, and the effects of vehicle

vibrations on IMU measurements.

Fig. 4-1 gives an overview of a VIO flight in FlightGoggles. The quadrotor uses

the trajectory tracking controller described in [32] to track a predefined trajectory

that was generated using methods from [33]. State estimation is based entirely on the

pose estimate from VIO, which is using the virtual imagery from FlightGoggles and

real inertial measurements from the quadrotor. In what follows, we briefly describe a

series of experiments using FlightGoggles and an onboard camera which verified that

40

VIO results from the FlightGoggles aircraft-in-the-loop simulator was comparable to

results using a real camera for visual state estimation.

We performed experiments using the FlightGoggles simulator in 2 scenarios to

verify the use of a simulator to perform the development of VIO algorithms using

real-time exteroceptive camera simulation with aircraft-in-the-loop. For the baseline

experiment, we flew the quadrotor through a window without the assistance of a

motion capture system first using a on-board camera and then using the simulated

imagery from FlightGoggles.

4.1.1 Related Work

Synthetic Environments for Robotics

There has been a variety of work on the use of synthetic data sets and simulation

in robotics and more generally computer vision. Synthetically generated data sets,

such as those in [12], [34], have become of particular interest as the need for large

labeled data sets for deep learning has become prevalent. Of particular note to the

work presented here is the method of Richter et al. [35] which uses pre-built video

games to generate semantically mapped synthetic data sets. Kaneva et al. [36] use

photorealistic renderings to evaluate the performance of different feature descriptors

under a variety camera conditions. Handa et al. [14] provide a synthetic data set

for the verification of SLAM algorithms against a known 3D model and trajectory.

In robotics, Gazebo [8] is the ubiquitous full simulation environment, with specific

applications to UAVs in RotorS [10], which is studied in depth in [9]. Of primary

relevance to this work is Microsoft Research’s recent release of a developing project,

AirSim, an Unreal Engine based simulation environment for UAVs [37]. AirSim is a

plug-in to Unreal Engine providing a rendered viewpoint of a simulated (or possibly

real) UAV location in the Unreal world. Early releases have an eye toward being able

to generate large data sets for deep learning based off a simulated UAV model. To the

best of our knowledge, the proposed system for UAV development is the first system

that allows the UAV computer to use synthetic exteroceptive sensor data along with

41

real interoceptive sensor data, both streaming in real time, while the UAV is in flight

experiencing real physics.

Visual-Inertial Navigation

The literature on visual-inertial navigation is vast, including approaches based on

filtering, e.g., [38], [39], fixed-lag smoothing, e.g., [40], [41], and full smoothing [42]–

[45]. We refer the reader to the recent survey by Forster et al. [44] for a comprehensive

review. As the computational power that can be carried on a flying platform has

increased, some visual-inertial navigation algorithms have begun to be run in real time

on UAVs. Early implementations such as [46]–[48] focused on extending the full SLAM

system of Klein and Murray (PTAM) [49] to work on aerial vehicles. Because PTAM

was originally designed as a single camera solution for small workspaces, subsequent

works primarily focus on application to large workspaces without computational costs

growing too high, and using IMU information to correct for the scale drift that is

inherent in monocular vision only solutions. More recent approaches have included

using a cascading estimate of orientation and position with a low rate stereo camera

[50], replacing the PTAM visual SLAM system with the semi-direct approach SVO

[51] augmented by an IMU [52], using an off-the-shelf pose estimate from an RGB-D

sensor (Google Tango) [53], low energy applications [54], and a factor graph based

approach similar to our own [55].

4.1.2 UAV System

A UAV test platform and development environment was built for the testing of on-

board estimation and control algorithms while performing agile maneuvers. The UAV

is fully controlled by an on-board NVIDIA TX1 module with a modular software

framework, enabling rapid testing of new algorithms and sensors.

A single USB 3.0 Point Grey Flea3 monochrome camera with a resolution of

1024x1280 and an external Xsens MTi-3 IMU provide the visual and inertial sensor

package for the board. The Point Grey camera uses a Sunex DSL219 fisheye lens; to

42

avoid the high distortion at the edges of the lens only the center of the image was

used for VIO algorithms, leading to an effective resolution of 512x640.

The UAV is controlled through an on-board software setup that provides complete

end-to-end operation of the UAV from raw sensor data to the signals sent to each ESC.

The system uses Lightweight Communications and Marshaling (LCM) [21] for com-

munication between on-board modules, giving a lightweight and flexible framework.

All processing occurs on-board the CPU and GPU of the TX1.

4.1.3 Experiments

Experimental Setup. Experiments were performed in an approximately rectan-

gular 6m x 4m environment. A set of 6 OptiTrack Prime 17W cameras provide a

ground truth pose estimate in the enclosed area, running at 120Hz, which is used for

photorealistic camera image generation. Three sets of experiments were performed:

1. Visual state estimation and control in a baseline scenario involving an indoor

environment

2. Visual state estimation and control in a challenging scenario involving flying

through a window

3. Camera parameter sweep to investigate estimation accuracy for various camera

parameters

The first two experiments were conducted both in simulated environments (using

FlightGoggles) and in real environments, whereas the last experiment was performed

in simulated environments. Each experiment has two phases; first, a take-off phase

where the UAV flies under motion capture using position references provided by the

operator, and second; the experimental phase where the UAV flies with the VIO state

estimate in the loop and executes a predefined periodic pattern until a low battery

warning occurs. The take-off period serves to both stabilize the VIO state estimate

with visual features (a natural restriction of a monocular method) and to initialize

the integrator for the controller. Due to the small available flight space and long flight

43

(i)

(ii)

(iii)

(iv)

(v)

(vi)

(a) Trajectory from a single oval of VIO-in-
the-loop flight overlaid on the environment
3D model. The green line shows the posi-
tion of the drone as recorded from motion
capture while the red line shows the VIO
state estimate of position used for control.

(b) Top view of the drone flying in the lab
during the experiment, the pose of the drone
for the six images images displayed below is
emphasized.

(i) (ii) (iii)

(iv) (v) (vi)

(c) Six photorealistic images generated and streamed to the drone in real time for VIO state
estimation during a VIO experiment around an oval trajectory. Green lines show 0.3 seconds
of history for visual features detected and tracked by the vision front end.

Figure 4-2: Visualization of a VIO experiment using simulated imagery showing the
(a) true and estimated trajectories of the drone, (b) top view of the drone’s flight,
and (c) six images generated during flight with the tracked features shown.

44

times the UAV with eventually drift into a wall if given a fixed reference trajectory in

the global coordinate frame. To keep the UAV within the flight cage drift is corrected

by shifting the global desired trajectory to match the visual-inertial odometry (VIO)

local frame after each loop. This mimics the behavior that would occur if the UAV

were generating trajectories based on its available local map to navigate a room.

Visual Navigation in Open Space. In total 42 experiments were performed in

open space, 21 using the on-board camera on the UAV and 21 using our photorealistic

image generation system to simulate a camera in real time. In all 21 experiments using

the on-board camera and in 19 out of 21 experiments using the simulated camera the

UAV traced out the desired trajectory with the VIO state estimate in the control

loop for the full life of the battery (2-3 minutes). In the two simulated experiments

that had to be ended early, Wifi network dropouts caused visual data to not reach

the UAV, and the experiment was ended for safety. The reference trajectory flown

for these experiments is an oval of length 2.8m and width 1.6m, with a period of

3.5 � 3.8 sec, for an average speed of ⇠ 2m s
�1 and a maximum speed of ⇠ 3m s

�1

on the long sides of the oval.

The estimation error as a function of distance traveled for all 42 experiments is

shown in Fig. 4-3. Since this system has no loop closures the initial estimation error

during take-off cannot be recovered, resulting in the higher error percentages at the

beginning of the flight when little distance has been traveled. Once the UAV starts

flying its trajectory the estimation error remains below 1% (1 cm error for every 1m

flown) in all experiments. Note that the tracking of features is intentionally limited

to 3 seconds, both to maintain low computation costs and to better mimic flying

through an ever changing environment where no features can be seen continuously.

The VIO state estimate was continuously in the control loop without assistance from

motion capture for all 42 flights, demonstrating a stable and accurate state estimate.

Visual Navigation through a Window. Our second set of experiments in-

volves flying through a window (0.90m x 0.60m, approximately twice the size of the

UAV) with the VIO state estimate in the loop. Flying through windows presents

a challenging problem for monocular VIO systems with forward facing cameras, as

45

Figure 4-3: Error in VIO state estimate of the UAV’s position as a percentage of
the distance traveled by the UAV, and rate of error in the VIO estimate of yaw.
Flights flown with the on-board camera are shown on the left while flights flown
using camera images rendered in Unity are shown on the right; a total of 21 flights
were flown with each style of camera without a window, and 8 and 10 flights with the
real and simulated cameras through a window.

46

50
°

60
°

70
°

80
°

90
°

100
°

110
°

120
°

130
°

140
°

Field of View

0.0%

1.0%

2.0%

3.0%

30 60 90 120

Frames per Second

0.0%

1.0%

2.0%

3.0%

Estimation error per distance traveled (%)

VGA XGA Half HD Full HD

Camera Resolution

0.0%

1.0%

2.0%

3.0%

Figure 4-4: VIO estimation error per distance traveled (%) using FlightGoggles
with prerecorded IMU data across multiple camera parameters. Eight trials were
performed for each sensor type. All trials were run in real-time using our simula-
tion pipeline and an attached Jetson TX1. FOV trials were conducted with XGA
(1024x768) resolution at 60 FPS. FPS trials were run at VGA (640x480) resolution
and 80

� field of view. Camera resolution trials were conducted at 50 FPS and 60
�

FOV.

(a) Unity generated image with window to fly
through in the upper right corner.

(b) Image of UAV flying through a physical
window using VIO in the loop based on its
on-board camera and IMU.

Figure 4-5: Images from VIO experiments, showing an image from a virtual on-
board camera (top) and of our UAV flying through a window gap under VIO control
(bottom)

47

the visual element of the VIO system relies on motion to triangulate features. When

flying through a window the only visual data linking state estimates on one side of

the window to the other are those seen through the window, for which there is little

tangential motion making triangulation inaccurate.

To the best of our knowledge the only two demonstrations of on-board, vision-

based navigation through window openings come from Loianno et al. [56] and Falanga

et al. [57]. In both cases the focus was on trajectory generation and control under

uncertainty, and state estimation was only maintained for a single traversal of the

window before landing. A key concern is the ability to continue flight after passing

through a window; therefore we sought to repeat the baseline experiment with a

window in the path of the oval trajectory, although at a slower speed (average speeds

of ⇠ 1.7m s
�1 and maximum speed of ⇠ 2.3m s

�1). At each loop a simulated window

detection occurred to set a new flight trajectory through the window, however this

window detection was not used for state estimation.

Our photorealistic sensor simulation system provides the platform to develop our

algorithms for window navigation. Developing algorithms with a physical window

hazards numerous crashes as the system is developed, and the development of the

system without a window or without visual navigation algorithms in the loop does

not provide an accurate description of the performance of the UAV powered by visual

navigation algorithms. Instead, our development environment allows for the visual

effect of flying through a window, real dynamics, and real inertial measurements,

without crashing on failure.

A total of 10 flights were performed with a simulated camera, constituting 361

traversals of the window, with 3 traversals resulting in a “crash” with the virtual win-

dow (crashes detected from the motion capture position of the UAV). The estimation

error across the flights is shown in cyan in Fig. 4-3.

Through experimentation with simulated imagery we found that a high keyframe

rate with less feature data is necessary to both consistently bridge the gap created

by flying through the window, and to quickly re-establish an accurate state estimate

on the other side of the window. Based on these lessons, we performed the same

48

experiment with a real window and the on-board camera. A total of 8 flights were

performed, constituting 119 traversals of the window with 6 crashes/pilot take overs

due to estimation divergence. Based on the analyzed data the lower success rate when

using a real camera was due to a combination of noisier visual data than provided

by the simulation system, and the additional computational load on the on-board

computer of image acquisition slowing down the optimization rate. The noisier visual

data can come from a combination of lower quality features in the world, motion blur

of the live camera, and imperfections in the estimated camera model.

Camera Parameter Tests. In addition to allowing for testing in a variety of

visual environments, our development environment also allows for rapidly evaluating

sensor properties and configurations. For instance, we took a 70 second pre-recorded

flight of our UAV flying an oval trajectory under motion capture and tested the VIO’s

performance in real-time using real-world IMU measurements against a set of camera

parameters spanning Field of View, Camera Resolution, and Frame Rate. See Fig. 4-4

for a selection of results. These measurements are not meant as a declaration of the

best camera to use for visual-inertial navigation, but rather to show the capabilities of

the system for rapid system prototyping to fit new challenges. While we have focused

on a few parameters of the camera sensor itself, a wide range of other effects such as

camera blur, scene lighting, feature richness, and accuracy of the camera model can

easily be investigated.

4.2 Perception-aware Planning

Much of the work presented in this section has been published in The American

Control Conference (ACC) in 2019 [18].

During the performance of agile maneuvers by a quadrotor, visually salient fea-

tures in the environment are often lost due to the limited field of view of the on-board

camera. This can significantly degrade the estimation accuracy. To address this is-

sue, we present an approach to incorporate the perception objective of keeping salient

features in view in the quadrotor trajectory planning problem. The FlightGoggles

49

simulation environment was used to perform experiments. It allowed rapid experi-

mentation with feature-rich objects in varying amounts and locations. This enabled

straightforward verification of the performance of the algorithm when most of the

salient features are clustered in small regions of the environment. The experiments

show that significant gains in estimation performance can be achieved by using the

proposed vision aware planning algorithm as the speed of the quadrotor is increased.

A robust state estimator is often critical in performing various agile maneuvers and

loss of tracked features can result in collisions. Longer feature tracks often result in

more robust visual inertial state estimation performance. Motion planning algorithms

agnostic to the location of the visual features in the environment potentially result in

trajectories for which the vehicle may face featureless areas of the environment (e.g.,

empty walls). This leads to diminished state estimation accuracy, which degrades the

performance of trajectory tracking, potentially resulting in catastrophic failure, such

as a collision. Perception-aware motion planning algorithms consider trajectories that

ensure better observation of visual features, improving state estimation accuracy and

enabling faster navigation in complex environments (as illustrated in Figure 4-7).

This experiment focuses on perception-aware trajectories for quadrotor aircraft

which pass through a finite sequence of predetermined waypoints. The perception

objective consists of observing a sparse set of triangulated landmarks from multiple

keyframes in order to improve both the estimate of the position of the landmarks

and the state of the aircraft itself. The perceptual sensor yields information about

the relative transformation between consecutive keyframes, which motivates the co-

visibility constraint added to the optimal control problem. Nevertheless, this allows

for significant freedom in specifying both the path and the orientation of the aircraft

between the waypoints in order to optimize an objective of interest.

4.2.1 Related Work

Traditional methods for generating quadrotor trajectories exploit the differential flat-

ness properties [58] of the dynamics of the quadrotor. The flat outputs, the trajecto-

ries of the x, y, z, and components of the state of the quadrotor, can be specified

50

Figure 4-6: Aspects of visual-inertial navigation. Observations of landmarks are
acquired at discrete time intervals over a continuous trajectory.

Figure 4-7: An environment where most of the visual features are situated in the
middle. Traditional planning approaches could consider facing forward as the vehicle
navigates through a tight turn. Perception-aware planning algorithms, on the other
hand, consider facing towards the visual features in the middle of the room while
executing the same maneuver. This results in improved state-estimation performance,
especially at high speeds.

51

independently, and furthermore, they uniquely determine the trajectories of the re-

maining components of the state as well as the required control inputs. Mellinger

and Kumar [58] first proposed the idea of parametrizing flat outputs as polynomials

in time, selecting coefficients that minimize the snap of the quadrotor. Richter et al.

[33] proposed an extension to this work that bounds the actuator effort and adds a

time penalty to the cost function to encourage fast flight. Other approaches, e.g.,

proposed by Mueller et al. [59], make the assumption that the yaw of the quadro-

tor is constant during the execution of the trajectory and formulate the polynomial

optimization problem in terms of minimum jerk.

In addition to planning dynamically feasible trajectories, autonomy entails accu-

rate on-board state estimation. The difficulty of the latter task may vary significantly

based on the choice of the trajectory. Prior work has considered planning to min-

imize various measures of state-estimation uncertainty with the goal of satisfying a

chance constraint. The problem under consideration is to plan a path in the belief

space that ensures the probability of collision with the environment is lower than a

set threshold. Bry and Roy [60] propose a sampling-based motion planning algorithm

that generates a rapidly exploring random tree where the associated cost function

accounts for both the cost of executing the path and the uncertainty associated with

the action. The algorithm proposed by van den Van Den Berg et al. [61] accounts for

uncertainty during the planning phase through forward propagation of the covariance

matrix over paths planned using a RRT based planner. They use this to enumerate

the paths and select the one with the lowest cost.

Bry and Roy [60] and Van Den Berg et al. [61] solve problems involving chance

constraints and require full knowledge of obstacle locations in the environment in

addition to the locations of informative landmarks: beacons, visual landmarks, etc.

The chance constraint can impose conditions on the full state of the robot under con-

sideration, and these methods plan trajectories in the full state space of the robot.

For instance as mentioned previously, quadrotor trajectory planning often takes place

in the differentially flat space. However, to satisfy the chance constraint, these ap-

proaches would require either mapping the obstacles and landmarks into this space

52

or a projection of the differentially flat space back into the full state space to check

the chance constraint during planning.

Approaches that specifically target visual-inertial navigation have been proposed.

In [62], the authors propose a trajectory optimization method that first solves for a

goal location given a target image and then plans the trajectory for which the repro-

jection error of the desired features is minimized during execution of the trajectory.

In [63], the authors use a B-spline polynomial parameterization for the trajectory, and

solve a minimum-time trajectory optimization problem with the objective of always

keeping a certain set of features in the field of view. These methods are motivated

by keeping a specified set of features in view. As such, they do not provide a flex-

ible framework for allowing the algorithm to keep a smaller set of features in view

to balance the perceptual constraints and the desired average speed while ensuring

the actuator constraints are not violated. The set of possible trajectories that can

be achieved using this constraint is often restrictive and not suitable to applications

where aggression of the quadrotor is preferred over target tracking.

Falanga et al. [64] present an approach that adds a perception objective into

their model predictive control framework. They model the cost as minimizing the

velocity of a point of interest in the camera frame. They consider keeping a cluster

of features within the field of view. While this holds when the visible features in

the environment are clustered together at every position along the trajectory, there

is room for improvement when the features are more dispersed. We address two

main remaining challenges, (1) Enforcing the constraint that a significant number

of features are visible in consecutive keyframes instead of enforcing that a certain

set of features stay in view, (2) A computationally-efficient formulation to solve this

problem while generating the reference trajectory to follow.

Passive methods for keeping features in view have also been studied. Attention

and anticipation [65] has been studied for visual feature selection where the goal is

to select features that will remain in the field of view without adding any actuator

effort to the quadrotor. The authors of [65] use an information gain metric for a

greedy algorithm to select features that will add the most information to the state

53

estimate by forward simulating the dynamics of the quadrotor. However, this method

separates perception from the planning and does not actuate the quadrotor to account

for observing features.

4.2.2 Experiments

We fly generated reference trajectories using a custom built quadrotor platform in

an 11m x 11m x 5.5m motion capture room, with 24 OptiTrack Prime 17W cam-

eras providing the ground truth position of the quadrotor. For the purpose of state

estimation, there is an Xsens MTi-3 IMU onboard the quadrotor. Visual data is

generated in real-time using the FlightGoggles [19] photo-realistic image generation

system. The visual inertial odometry system fuses the information from the IMU and

camera to generate an estimate of the state of the quadrotor.

We design a trajectory to fly in the environment shown in Figure 4-8. The room

has been emptied to demonstrate the effectiveness of the approach. The walls are

textureless and thus devoid of visual landmarks but the center of the room has pillars

and statues that are landmark-rich.

The reference trajectory generated by our proposed method is shown in Figure

4-9.

In this section, we assume locations of the landmarks in the environment are

known a priori. This is typical in some autonomous quadrotor aircraft scenarios

such as drone racing, industrial warehouses, and more general scenarios where the

environment has been mapped beforehand and the topological visual map of the

environment is known. In practice, the landmark locations used could be replaced

by accumulating triangulated landmarks from visual inertial odometry over a short

window. For the purpose of experimentation, we relax this constraint.

Since we would like to optimize the polynomials over segments defined by keyframes,

we want the optimization to be performed at keyframe rate at the very least. In prac-

tice, we use a keyframe rate of 10Hz and indeed our implementation computes the

polynomials in less than 0.1 sec. Our timing experiments were run on a 10 core Intel®

i9-7900X CPU with 32GB of RAM. As mentioned previously, it is possible to write

54

Figure 4-8: The figure shows the environment that is used for the experiments. This
environment has no landmarks on the walls and all the objects are in the center of
the room.

an efficient implementation that uses a GPU which would fit on the Tegra TX2 which

is currently onboard our quadrotor aircraft platform.

In the rest of this section, we present two experiments. In the first experiment,

the state estimate for closing the control loop is provided by the motion capture

system, whereas in the second experiment, the state estimation is provided by visual

inertial odometry. We compare the effect on the performance of the visual front-end

and the tracking error of the controller with respect to the reference trajectory and

our optimized trajectory. The reference trajectory follows a forward facing objective

for the yaw. The parameters for the system are kept constant across both of the

experiments.

Experiment 1 (Mocap In-the-loop)

For the first experiment the quadrotor is commanded to perform the trajectory at

various top speeds (1.7m s
�1
, 2.7m s

�1
, 3.4m s

�1) with the state estimation from the

motion capture system being used to close the control loop. The reference trajectory

55

Forward Facing Optimized Yaw
1.7m s

�1 134.1836 180.0496
2.7m s

�1 126.7671 179.1885
3.4m s

�1 122.4460 179.1367

Table 4.1: The average number of tracked features between keyframes in Experiment
1 is shown above.

that is generated by applying our approach is shown in Figure 4-9.

This trajectory is controlled using a nonlinear dynamics inversion based controller

as described in [66]. In the figure, the arrows represent the heading angle of the

quadrotor. As can be seen in the figure, the quadrotor tries to keep the yaw an-

gle pointed towards the feature rich part of the environment which is the expected

behavior.

In this experiment, the average number of tracked landmarks between consecutive

keyframes is measured and compared between a forward facing trajectory and the

optimized yaw trajectory. The parameters for both the state estimation and the

controller are kept the same across all speeds. The results of this experiment is shown

in Table 4.1. As can be seen in the table, a significantly larger number of landmarks

is tracked across different speeds, which shows that the perception objectives are

maximized by our proposed method. Since the number of landmarks tracked across

keyframes is significantly larger, this directly validates that our approach is able to

generate trajectories that can maintain co-visibility of a large number of landmarks

between keyframes.

Experiment 2 (VIO In-the-loop)

In this experiment, the quadrotor is commanded to fly the same trajectory three

times with top speeds of 1.7m s
�1 and 2.7m s

�1 with the state estimate to close the

control loop provided by visual inertial odometry for both the forward facing yaw

and the optimized yaw. The parameters are again kept the same for every trial.

The qualitative comparison is shown in Figure 4-10. As can be seen from the figure,

the quadrotor fails to follow the trajectory while attempting to face forward, but is

56

Figure 4-9: The figure shows the optimized trajectory generated by the proposed
algorithm after taking the perceptual constraints into account. As can be seen in
the figure, the quadrotor prefers facing towards the objects in the environment and
avoids facing the empty walls.

successful when the optimized reference trajectory is used. It is important to note

here that the state estimation error drifts because the walls are featureless and the

poor state estimation results in unsuccessful tracking.

The quantitative results for this evaluation are shown in Table 4.2. The metric we

use to measure the tracking performance of the controller with the reference trajecto-

ries is the absolute trajectory error statistics. These are the average root-mean-square

error (RMSE), mean, and median of the trajectory errors over the three separate tri-

als for each instance of the forward facing and the optimized yaw trajectory. As can

be seen in the table, there is a significant improvement in the absolute trajectory

error statistics for the optimized yaw trajectory over the forward facing behavior. As

noted in the qualitative comparison, this can be attributed to having a better state

estimate due to a larger number of constraints between keyframes.

57

Figure 4-10: The Figure above shows the qualitative comparison between the quadro-
tor following the reference trajectory at 2.7m s

�1 closed by visual inertial odometry.
On the left, the trajectory flown with optimized yaw is shown. On the right, the
trajectory flown with a forward facing yaw is shown.

Forward Facing Optimized Yaw
Mean 0.3675m 0.1854m

1.7m s
�1 Median 0.3234m 0.1987m

RMSE 0.4838m 0.2246m

Mean 0.5152m 0.1549m

2.7m s
�1 Median 0.5185m 0.1625m

RMSE 0.5958m 0.1802m

Table 4.2: The average absolute trajectory error statistics over 3 trials of the trajec-
tory are shown in the above table.

58

Figure 4-11: Racecourse layout for the AlphaPilot simulation challenge. Gates along
the racecourse have unique IDs labeled in white. Gate IDs in blue are static and not
part of the race. The racecourse has 11 gates, with a total length of ⇠240m.

4.3 AlphaPilot Challenge

Much of the work presented in this section has been published in The International

Conference on Intelligent Robots and Systems (IROS) in 2019 [17].

The AlphaPilot challenge [28] is an autonomous drone racing challenge organized

by Lockheed Martin, NVIDIA, and the Drone Racing League (DRL). The challenge is

split into two stages. A simulation phase open to the general public, and a real-world

phase in which teams compete against each other by programming fully-autonomous

racing drones built by DRL. During the simulation phase, the FlightGoggles simu-

lation framework was used as the main qualifying test for selecting nine teams that

would progress to the next stage of the AlphaPilot challenge. To complete the test,

contestants had to submit code to autonomously race a simulated quadrotor with

simulated sensors through the 11-gate race track shown in Fig. 4-12. Test details

were revealed to all contestants on February 14th, 2019 and final submissions were

due on March 20th, 2019. This section describes the AlphaPilot qualifying test and

provides an analysis of anonymized submissions.

4.3.1 Challenge Outline

The purpose of the AlphaPilot simulation challenge was for teams to demonstrate

their autonomous guidance, navigation, and control capability in a realistic simula-

tion environment. The participants’ aim was to complete the track as fast as possible

59

using a simulated quadrotor based on the FlightGoggles multicopter dynamics model.

To accomplish this, measurements from four simulated sensors were provided: (stereo)

cameras, IMU, downward-facing time-of-flight range sensor, and infrared gate bea-

cons. Through the FlightGoggles ROS API, autonomous systems could obtain sensor

measurements and provide collective thrust and attitude rate inputs to the quadrotor

low-level acro/rate mode controller.

The race track was located in the FlightGoggles Abandoned Factory environment

and consisted of 11 gates. To successfully complete the entire track, the quadrotor

had to pass through all the gates in order. The final score was calculated as score =

10 · gates � time where gates is the number of gates passed in order and time is

the time taken in seconds to reach the final gate. If the final gate was not reached

within the race time limit or the quadrotor collided with an environment object, a

score of zero was recorded. To discourage memorization of the course, the exact

gate locations were subject to random unknown perturbations. These perturbations

were large enough to require adapting the vehicle trajectory, but did not change the

track layout in a fundamental way. The final score for each team was the average

of their five highest scores over an evaluation set of 25 perturbed courses that was

kept unknown to the teams. For development and verification of their algorithms,

participants were provided with the nominal gate locations, as well as another set of

25 perturbed courses with identically distributed gate locations.

4.3.2 Survey of AlphaPilot Simulation Challenge Results

FlightGoggles Sensor Usage

Table 4.3 shows the usage of provided sensors, the algorithm choices, and final and

five highest scores for the 20 top teams (sorted by final score). All of these 20 teams

used both the simulated IMU sensor and the infrared beacon sensors. Several teams

chose to also incorporate the camera and the time-of-flight range sensor. A more

detailed overview of the sensor combinations used by the teams is shown in Table 4.4.

This table shows the number of teams that employed a particular combination of

60

1
2

3
4

5 6

7

89

10

START

FINISH

Figure 4-12: Overhead visualization of speed profiles (in ms-1) and crash locations
for top 20 AlphaPilot teams across all 25 runs. Nominal gate locations are numbered
in track order and marked with boxes. Note that most crashes occur near gates,
obstacles, or immediately after takeoff.

sensors, the percentage of runs completed, and the mean and standard deviation of

the scores across all 25 attempts.

Algorithm Choices

The contestants were tasked with developing guidance, navigation, and control algo-

rithms. Table 4.3 tabulates the general estimation, planning, and control approaches

used for each team alongside the sensor choices and their scores.

Of the top 20 teams, only one used an end-to-end learning-based method. The

other 19 teams relied on more traditional pipelines (estimation, planning, and control)

to complete the challenge. One of those teams used learning to determine the pose

of the camera from the image.

Estimation: For state estimation, all but one team used a filtering algorithm such

as the extended Kalman filter [67], unscented Kalman filter [68], particle filter [69], or

the Madgwick filter [70] with the other team using a smoothing based technique [71].

The teams that chose to use a visual inertial odometry algorithm opted to use off-

the-shelf solutions such as ROVIO [72], [73] or VINS-Mono [74] for state estimation.

Planning: The most common methods used for planning involved visual servo

61

C
am

er
a

IM
U

R
an

ge
r

In
fr

ar
ed

Le
ar

ni
ng

V
IO

Fi
lte

r
Sm

oo
th

er
Po

ly
no

m
ia

l
V

isu
al

Se
rv

o
O

th
er

Li
ne

ar
M

P
C

O
th

er

Fi
na

lS
co

re

Sc
or

e
1

Sc
or

e
2

Sc
or

e
3

Sc
or

e
4

Sc
or

e
5

91.39 91.52 91.50 91.38 91.32 91.24
84.52 85.35 84.62 84.33 84.19 84.10
81.04 81.47 81.05 80.94 80.92 80.85
80.56 80.99 80.86 80.40 80.29 80.26
78.61 78.78 78.65 78.56 78.55 78.53
78.55 78.69 78.59 78.50 78.50 78.48
76.08 76.60 76.17 75.95 75.90 75.77
74.23 74.51 74.17 74.17 74.14 74.13
71.44 71.50 71.47 71.45 71.44 71.36
71.10 71.28 71.10 71.07 71.02 71.00
70.87 73.58 72.80 72.78 72.70 62.50
70.46 71.03 70.79 70.22 70.21 70.03
69.91 71.42 70.70 69.29 69.17 68.96
57.26 76.96 76.35 66.54 66.48 0.00
56.28 56.48 56.36 56.21 56.17 56.16
55.88 57.50 56.15 55.71 55.29 54.73
29.84 74.76 74.46 0.00 0.00 0.00
12.99 25.19 19.89 19.85 0.00 0.00
12.58 41.05 21.84 0.00 0.00 0.00
11.81 59.07 0.00 0.00 0.00 0.00

Table 4.3: Sensor usage, algorithm choices, and final and five highest scores in Al-
phaPilot simulation challenge.

Sensor Package Selection Number
of Teams

Completed
Runs (%)

Mean
Score

Std.
Dev.

IMU + IR 12 48.67 35.32 37.72
IMU + IR + Camera 4 36 26.72 35.87
IMU + IR + Ranger 3 24 15.04 27.43
IMU + IR + Ranger + Camera 1 60 41.39 34.55

Table 4.4: Sensor combinations used by the top AlphaPilot teams, percentage of
completed runs, mean score and standard deviation across all 25 evaluation courses.

62

Number of completed runs by team

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

(a) The number of completed runs
for the top 20 teams.

0 2 4 6 8 10 12 14 16 18 20
-20

0

20

40

60

80

100

120
Mean and Std deviation for each team

(b) The mean and standard devia-
tion of scores.

Figure 4-13: The figures above show the number of completed runs by each of the
top 20 AlphaPilot teams along with the mean and standard deviation of their scores
for all 25 runs.

using infrared beacons or polynomial trajectory planning such as [33], [58]. Other

methods used for planning either used manually-defined waypoints or used sampling-

based techniques for building trajectory libraries. 5 of the 19 teams to use model based

techniques also incorporated some form of perception awareness to their planning

algorithms.

Control: The predominant methods for control were linear control techniques and

model predictive control [75]. The other algorithms that were used were geometric

and backstepping control methods [76]. Five of the 19 teams that used model-based

techniques also incorporated some form of perception awareness in their planning

algorithms.

Analysis of Trajectories

To visualize the speed along the trajectories, we discretized the horizontal plane and

colored each grid cell on a logarithmic scale according to the average of the local

speeds. From the figure, we can observe that most teams chose to slow down for

the sharp turns at gates 2 and 7. We can also observe that in general the average

speed around gates is lower than at other portions of the environment, which can be

attributed to the need to ‘search’ for the next gate. Fig. 4-12 also shows the crash

63

locations of all the failed attempts. We observe that many of the crash locations are

in the vicinity of the gates, which may be caused by widespread use of visual-servo-

based techniques combined with the fact the infrared gate beacons are more likely to

leave the camera field of view at close range.

Individual Performance of top Teams

For individual performance, we analyze the number of completed runs for each of

the top teams and the mean and standard deviations of the scores. This is shown

in Fig. 4-13. Given that the final scoring function for the competition only included

the five best scoring runs, teams were encouraged to take significant risk to improve

their top scores. Consequently, 75% of the contestants failed to complete the course

in at least half of their 25 runs. Only one team completed the entire course in all

of their 25 runs. Notably, this team also achieved very consistent scores across all

runs. While their average score across all runs ranks among the highest of all teams;

their final score based on the five best runs is ranked significantly lower, showing that

risk-taking strategies are indeed rewarded.

4.4 The Blackbird Dataset: A Large-Scale Dataset

for UAV Perception in Aggressive Flight

Much of the work presented in this section has been published in The International

Symposium on Experimental Robotics (ISER) in 2018 [15] and an extended version

has been submitted to The International Journal of Robotics Research in 2019 [16].

As hardware and control capabilities of aerial platforms have increased dramati-

cally in the last decade, autonomy algorithms in general, and perception algorithms

in particular, have struggled to keep up. New videos of remotely piloted vehicles rac-

ing through gates at high speeds have drawn a sharp contrast with current autonomy

capabilities and has inspired many researchers to challenge autonomy algorithms to

keep up with the hardware capabilities.

64

Table 4.5: UAV Visual Inertial Datasets Comparison

EuRoC

MAV [80]

UPenn Fast

Flight [81]

Zurich Urban

MAV [82]

UZH-FPV Drone

Racing [83]
a

Ours

Environments 2 1 3 2 5
b

Sequences 11 4 1 27 186

Camera 20Hz 40Hz 20Hz 30/50Hz 120Hz

IMU 200Hz 200Hz 10Hz 500/1000Hz 100Hz

Motor Tachometers n/a n/a n/a n/a ⇠190Hz

Depth Cameras n/a n/a n/a n/a 60Hz

Segmentation n/a n/a n/a n/a 60Hz

Max Distance 130.9m 700m 2 km 340.1/923.5m 860.8m
Top Speed 2.3m s

�1
17.5m s

�1
3.9m s

�1c
12.8/23.4m s

�1
13.8m s

�1d

mm Ground Truth 100Hz
e

n/a n/a 20Hz
f

360Hz

a Values are separated as (value indoors)/(value outoors)
b Additional environments may be rendered using FlightGoggles c Instantaneous velocity from GPS
d Fastest among indoor trajectories e Accuracy only guaranteed during low agility maneuvers
f Drops out frequently at high speeds or during aggressive maneuvers

One of the key challenges that must be solved in high speed autonomy is the ability

to localize in an unknown environment without the aid of external systems such as

GPS or motion capture. Due to their light weight and low power consumption,

a combination of inertial measurement units (IMUs) and cameras have been the

most popular sensor configuration for small UAVs. This sensor set has led to an

increased focus on visual inertial simultaneous localization and mapping (VI-SLAM)

for autonomous unmanned aerial vehicle (UAV) flight in recent years. With improved

hardware and algorithms recent works such as [19], [77], [78] have demonstrated

the possibility of high speed flight using on board state estimation, however, the

performance gap with human operators remains large.

With the increased focus of high performance perception algorithms, two recently

released challenges have pushed forward the race to develop autonomy algorithms at

near human abilities. The [79] challenge organized by DARPA involves traversing a

variety of environments including unknown and unstructured scenarios such as those

typical of caves. This has challenged the community to develop robust autonomy

algorithms capable of navigating in unstructured environments for large durations of

time with a high degree of situational awareness.

65

One of the primary challenges in the development of new high performance percep-

tion algorithms is the difficulty in creating a safe development platform. Developing

high performance UAVs with a full sensor suite and safely operating them requires a

long and costly process. In addition, the desire to have a ground truth motion capture

solution and a safe operating environment typically limits experiments to small mo-

tion capture rooms with no variation in the surrounding environment. The Blackbird

UAV Dataset seeks to remove the heavy development burden on researchers by pro-

viding a large and highly varied dataset that pushes past the current capabilities of on

board algorithms, allowing development to be focused on the perception algorithms

alone.

A secondary driver for the Blackbird UAV Dataset has been new extensions of

traditional visual inertial odometry algorithms that use novel sensors such as event

based camera systems [84], [85], or motor tachometers [86], [87]. To aid extensions

such as the algorithms above, the dataset includes motor tachometer data, a wide

range of visual sensors beyond the traditional stereo pair, and the ability for a user

to generate new types of exteroceptive data in the future using the FlightGoggles

simulation system in conjunction with the existing proprioceptive and ground truth

data in the dataset.

The key features of the Blackbird UAV Dataset can be found in Table 4.5. The core

of the dataset, including the majority of the flights with proprioceptive measurements

(IMU and motor tachometers) and grayscale imagery was initially published in [15].

The full dataset provided here provides an extension of that work adding a) new,

higher speed flights, b) a dynamic visual environment, c) RGB streams with motion

blur for all flights, d) depth streams for all flights, e) ground truth semantic labels

for all images, and f) benchmarking of state-of-the-art visual odometry algorithms.

The benchmarking of two state-of-the-art visual and visual-inertial odometry al-

gorithms is performed to provide a point of reference for users of this new dataset.

Namely, we benchmark VINS-Fusion, from [88], and ORB-SLAM, from [89], which

are currently the top two open-source, vision-based odometry estimation algorithms

in the KITTI odometry benchmark, [90]. We report this results in Section 4.4.6. In

66

addition, we provide tools to run the same evaluation on other algorithms.

4.4.1 Related Work

As can be seen from Table 4.5, we seek to combine and add to the best features of

existing UAV datasets, with the high accuracy ground truth found in indoor datasets,

e.g.[80], the high speed and agility found in outdoor datasets, e.g.[81], [82], [91], and

additionally providing an unprecedented variety and volume of sensor modalities. [80]

present the widely used EuRoC MAV datasets, a collection of 11 trajectories with an

average speed of 1m s
�1 and highly accurate ground truth on half of the sequences.

While the dataset was a large step forward, it contains relatively low speeds and low

rate cameras by today’s standards. [81] present a fast outdoor flight dataset with

the same trajectory at 4 different speeds and GPS ground truth. Although this does

allow the evaluation of online algorithms in outdoor settings with long distances, it

does not provide high quality ground truth or varied visual environments. The Zurich

Urban MAV Dataset, [82], contains 2 km of visual and inertial data recorded from

a tethered UAV flying in an urban setting, but it lacks high-precision ground truth

pose. [91] present TorontoCity, a very large UAV dataset with data from multiple

perspectives of the city of Toronto captured from different cameras and a LiDAR.

TorontoCity focuses on tasks such as segmentation and classification of the environ-

ment. It, however does not contain inertial information and cannot be used in the

context of visual inertial navigation. More recently, [83] released the UZH-FPV Drone

Racing dataset, which does include a set of aggressive outdoor trajectories, and, like

Blackbird, provides visual-inertial data and highly accurate ground truth, though

not through highly dynamic maneuvers. While UZH-FPV improves over previous

datasets by bringing highly accurate ground truth to outdoor, aggressive flights, the

Blackbird UAV Datasets stands out due to the following features: a) the volume of

unique flights, b) the variety of its visual data, c) the high rate and millimeter preci-

sion of its ground truth data persists throughout every flight and maneuver, d) high

rate measurement of the four rotor speeds, e) exact depth data for the left and down

cameras, and f) ground truth segmentation for both the left and down cameras.

67

The Blackbird dataset also differs from existing UAV datasets due to the use

of synthetic imagery, which allows for the generation of high rate, visually varied

imagery in cluttered environment while maintaining the real data from on board

proprioceptive sensors. The use of synthetic imagery for algorithm development has

seen a rapid increase in robotics driven by the volume of data required for learning

algorithms and the capability of modern systems to generate photorealistic synthetic

imagery. Synthetic datasets have been made for verification of SLAM algorithms in a

known 3D world such as [12]–[14], and for generating large labeled datasets for deep

learning [12], [34]. In addition to the use of synthetic imagery in datasets, simulation

based evaluation frameworks have become prevalent. Starting from the ubiquitous

robotics simulator Gazebo presented by [8], newer simulators such as AirSim by [37]

and NVIDIA Issac provide similar capabilities to the FlightGoggles system used for

this dataset in rendering photorealistic imagery. By combining true (hard to simulate)

proprioceptive data from our UAV with (easy to simulate) exteroceptive data from

FlightGoggles, we get a high rate and high accuracy dataset of challenging flight

scenarios.

This contribution is organized as follows. In Section 4.4.2 we describe the quadro-

tor platform and system that was used for collecting the data presented in this paper.

Section 4.4.5 describes the data provided in the dataset. In Section 4.4.3 and Sec-

tion 4.4.4 we describe the format of the available data and the validation of the data.

Section 4.4.6 provides benchmarks of visual and visual-inertial navigation algorithms.

Finally, Section 4.4.7 describes the known issues within the dataset.

4.4.2 Data Collection Setup

UAV Platform

Data was collected using a custom built quadrotor UAV designed for agile autonomous

flight, which we call Blackbird (Figure 4-14). The UAV caries an Xsens MTi-3 IMU,

custom made optical motor encoders for high rate motor speed measurements, a DJI

Snail propulsion system, and a NVIDIA Jetson TX2 on a custom carrier board. The

68

Figure 4-14: Coordinate frames in use for this dataset. Note that Camera_D and
Body_Frame are coincident, but are translated in the figure for visualization.

Table 4.6: Quadrotor characteristics

Property Value Description

Mass 0.915 kg Mass with battery
Ixx 4.9⇥ 10

�2
kgm

�2 X moment of inertia
Iyy 4.9⇥ 10

�2
kgm

�2 Y moment of inertia
Izz 6.9⇥ 10

�2
kgm

�2 Z moment of inertia
Arm Length 0.13m Center to end of arm

fx, fy 665.108 px Cameras’ focal length
FOV 60.0

� Cameras’ vertical FOV
�

gyro
1.2⇥ 10

�4
rad s

�1
p
Hz Gyroscope noise density

�
gyro
b 4.7⇥ 10

�6
rad s

�2
p
Hz Gyroscope random walk bias

�
accel

2.0⇥ 10
�3

ms
�2
p
Hz Accelerometer noise density

�
accel
b 4.4⇥ 10

�5
ms

�3
p
Hz Accelerometer random walk bias

CT 2.27⇥ 10
�8

N/rpm
2 RPM to thrust coefficient

Image Size 1024 px ⇥ 768 px Image width and height
znear 0.01m Near render plane distance for depth camera.
zfar 100.0m Far render plane distance for depth camera.

Stereo baseline 10 cm Distance between stereo pair

69

body of the vehicle is constructed from 3D printed MarkForged Onyx continuous

carbon fiber composite. Rubber dampeners are used to mechanically isolate vibra-

tions from the propulsion system from flight sensors. The physical properties of the

quadrotor as well as sensor statistics are shown in Table 4.6.

Experimental Setup

Flights were performed in an 11m ⇥ 11m ⇥ 5.5m motion capture room, with 24

OptiTrack Prime 17W cameras1 providing the 6D pose of the drone at 360Hz. Each

flight in the dataset is between 3-4 minutes long as the drone traces out a pre-defined

periodic trajectory using a non-linear dynamic inversion controller from [92]. The

drone is controlled and data is recorded by a custom software framework, [19], using

the Lightweight Communications and Marshaling (LCM) protocol, [21].

Visual Data Generation

Visual data was generated in post process using the FlightGoggles photo-realistic

image generation system from [17], [19]. FlightGoggles uses the ground truth 6D

pose of the drone from motion capture to generate images from the viewpoint of each

camera on the drone in a virtual environment. The system allows for complete control

over the visual appearance of the environment, the rate of camera images (up to the

360Hz motion capture rate), the number of cameras, and each camera’s location and

intrinsic and extrinsic properties. The visual data generated by FlightGoggles has

been previously validated for use in visual inertial state estimation in [19].

As part of the rendering process, a number of transforms are used to transform

NED ground truth data from world frame into FlightGoggles’ environment frame.

To ensure that all recorded flights in each trajectory takeoff from a common altitude

and overlap in the XY plane, Tmocap
norm is introduced as a per-flight translational offset

applied to the ground truth data to correct for offsets introduced during dataset

collection and generate a set of normalized trajectories. Tnorm
FGenv

is a per-trajectory

1For the Egg trajectory, the room was extended to twice the length and 24 motion capture cameras
were added to provide full coverage.

70

common transform applied to the normalized trajectory that positions flights into

the FlightGoggles environment in a collision-free manner. The full transform chain

from ground-truth coordinates to render coordinates is shown in Equation (4.1).

TFGenv(t) = Tnorm
FGenv ·T

mocap
norm ·Tmocap(t) (4.1)

Where TFGenv(t) is the render pose in FlightGoggles’ virtual environment at times-

tamp t. These transforms can be used to align the generated visual map between

different trajectories by the composition of these transforms for the evaluation of

algorithms that rely on re-localization.

Sensor Calibration and Temporal Synchronization

The Kalibr package, [93], was used to find the noise characteristics of the IMU and

the IMU-to-camera transform. A 3 second period at rest is included in every flight

to allow for initialization of the time varying IMU bias. Force and torque coefficients

of the drone were found experimentally through measurements in a wind tunnel to

obtain the relationship between motor speeds and vehicle dynamics. Clock synchro-

nization between motion capture data and on-board sensors was performed using a

combination of clock estimation over gigabit ethernet and chrony, from [23], over the

wireless network, with an upper bounded offset of ±5ms.

4.4.3 Dataset Format

Each flight within the dataset contains timestamped values for the following: ground

truth 6D pose of the UAV at 360Hz, IMU measurements at 100Hz, RPM measure-

ments for each motor at ⇠190Hz, three camera streams of grayscale images (forward

facing stereo pair and downward facing) at 120Hz, three streams of RGB images with

simulated motion blur at 60Hz from the same cameras, and two streams of depth im-

ages (forward-facing left and down-facing cameras) at 120Hz. The data is provided as

grayscale, RGB, depth and segmentation video feeds, LCM logs, ROS bags and CSV

files (one file per ROS topic) for easy use in typical pipelines. Scripts and binaries

71

60 60.5 61 61.5 62
time (s)

-15

-10

-5

0

5

ac
ce

le
ra

tio
n

(m
/s

2)

imu north
imu east
imu down
ground truth all

(a) IMU accelerometer vs ground truth.

60 60.5 61 61.5 62
time (s)

-4

-3

-2

-1

0

1

2

3

an
gu

la
r

ra
te

 (H
z)

imu roll
imu pitch
imu yaw
ground truth

(b) IMU gyroscope vs ground truth.

Figure 4-15: Derivative of position and rotational ground truth data compared with
accelerometer and gyroscope data for a flight at 4m s

�1.

necessary to re-render images using FlightGoggles at other rates (up to 360Hz) or

camera parameters and configurations are available at http://blackbird-dataset.

mit.edu/.

In addition to the raw data streams, the full calibration information of the UAV

system is included in the dataset i.e, IMU noise characteristics, IMU-camera trans-

form, camera intrinsic and extrinsic parameters (as currently rendered), and torque

and thrust coefficients. Some of these are included in Table 4.6. The dataset file

structure is specified in Figure B-1.

Lossless Temporal Image Compression

In an effort to reduce the download size of the pre-rendered dataset, all image feeds

are temporally compressed using lossless High Efficiency Video Coding (HEVC) and

are stored in platform-agnostic video containers. OpenCV-based helper utilities for

republishing the provided video feeds into ROS are provided in the dataset.

Depth Encoding and Resolution

The depth images provided in this dataset are distributed as single-channel 8-bit

resolution video feeds compressed using a non-linear bitwise mapping that increases

depth resolution near the camera. The mapping from compressed depth to true depth

in meters is given by

zmeters(zcompressed) = znear +
z
4
compressed · z2far

2554 · (zfar + znear)
(4.2)

72

http://blackbird-dataset.mit.edu/
http://blackbird-dataset.mit.edu/

0 0.2 0.4 0.6 0.8 1

normalized time

-4

-2

0

2

4

6

p
o

si
tio

n

x

y

z

1m/s

2m/s

3m/s

4m/s
0.67 0.685

1.25

1.3

1.35

1.4

1.45

(a) Position tracking

0 0.2 0.4 0.6 0.8 1

normalized time

-8

-6

-4

-2

0

2

4

6

ya
w

 (
ra

d
)

1m/s

2m/s

3m/s

4m/s

(b) Yaw tracking

Figure 4-16: Tracking precision while flying the same trajectory at speeds of 1 to
4m s

�1

where znear and zfar are the depth values for the depth camera’s near and far rendering

planes and are defined in Table 4.6.

4.4.4 Data Validation

Validation of ground truth data and inertial measurements in both quality and tem-

poral synchronization was performed by comparing raw inertial measurements with

derivatives of the ground truth pose using a Savitzky-Golay filter, [94]. Figure 4-15

shows a comparison of the IMU angular rate and acceleration with respect to ground

truth. The accuracy of the drone’s motor speed sensors were verified through the use

of an external tachometer.

Trajectory Tracking

A feature of the provided dataset is the ability to repeatably run perception algorithms

on a nominal trajectory pattern while flying at different speeds with new inertial,

dynamical, and visual data. A comparison of the ground truth pose of the same

trajectory (Sphinx, see Figure 4-17) flown four times at speeds between 1m s
�1 and

4m s
�1 is shown in Figure 4-16, with sufficient tracking accuracy for a user to isolate

the speed of flight from other parameters that may affect VI-SLAM algorithms.

73

Table 4.7: Blackbird Dataset Flights

Trajectory Constant Yaw Forward-Facing
Top speed (ms

�1) 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 13.8 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
3D Figure 8 - - - - - - - - - - - - -
Ampersand - M M H - - - - - - H H - - - - - - -
Bent Dice - E E M M - - - - E E E E - - - - - -

Clover - H H H H H H - - H H H H H H - - - -
Dice - - E E M - - - - - E E E - - - - - -
Egg - - - - - - - - H - - - M M H H H H H

Flat Figure 8 - - - - - - - - - - - - - -
Half-Moon - E E E M - - - - - M M M M - - - - -

Mouse - M M M M M M M - M M M M M M M M - -
Oval - - M M H - - - - - M M H H - - - - -

Patrick - E E E E M - - - E E E E E - - - - -
Picasso M M M M M M M - - M M - H H H - - - -

Sid - E E E E E E E - M M M M M M - - - -
Sphinx - H H H H - - - - - M M M M - - - - -
Star - M M M H H - - - M M M M M H - - - -

Thrice - E E E E E M M - E E E E E E M - - -
Tilted Thrice - E E E E E M M - E E E E E E E - - -

Winter - M M M M M - - - M - H H H - - - - -
Click flight for grayscale video preview of flight in all rendered environments.

Collision Checking

To verify that the trajectories being rendered do not collide with any obstacles in

the virtual environment, bullet3 based simulation, from [95], was used to verify that

the trajectories were collision free in the virtual environment prior to rendering the

camera streams.

4.4.5 Dataset Generation Methodology

The trajectories in this dataset were designed to encompass scenarios with low agility

such as a simple oval trajectory to trajectories that have rapid changes in the view-

point or rotational rate of the drone. In this section, we first describe the trajectory

generation and choices made for generating the trajectories available in this dataset.

Second, we classify the trajectories into categories for evaluation and ease of use.

Finally, we describe the available exteroceptive data and the process for generating

the data.

74

http://blackbird-dataset.mit.edu/BlackbirdDatasetData/ampersand/yawConstant/maxSpeed1p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/ampersand/yawConstant/maxSpeed2p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/ampersand/yawConstant/maxSpeed3p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/ampersand/yawForward/maxSpeed1p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/ampersand/yawForward/maxSpeed2p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/bentDice/yawConstant/maxSpeed1p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/bentDice/yawConstant/maxSpeed2p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/bentDice/yawConstant/maxSpeed3p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/bentDice/yawConstant/maxSpeed4p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/bentDice/yawForward/maxSpeed0p5/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/bentDice/yawForward/maxSpeed1p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/bentDice/yawForward/maxSpeed2p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/bentDice/yawForward/maxSpeed3p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/clover/yawConstant/maxSpeed1p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/clover/yawConstant/maxSpeed2p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/clover/yawConstant/maxSpeed3p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/clover/yawConstant/maxSpeed4p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/clover/yawConstant/maxSpeed5p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/clover/yawConstant/maxSpeed6p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/clover/yawForward/maxSpeed0p5/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/clover/yawForward/maxSpeed1p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/clover/yawForward/maxSpeed2p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/clover/yawForward/maxSpeed3p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/clover/yawForward/maxSpeed4p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/clover/yawForward/maxSpeed5p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/dice/yawConstant/maxSpeed2p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/dice/yawConstant/maxSpeed3p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/dice/yawConstant/maxSpeed4p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/dice/yawForward/maxSpeed1p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/dice/yawForward/maxSpeed2p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/dice/yawForward/maxSpeed3p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/halfMoon/yawConstant/maxSpeed1p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/halfMoon/yawConstant/maxSpeed2p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/halfMoon/yawConstant/maxSpeed3p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/halfMoon/yawConstant/maxSpeed4p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/halfMoon/yawForward/maxSpeed1p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/halfMoon/yawForward/maxSpeed2p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/halfMoon/yawForward/maxSpeed3p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/halfMoon/yawForward/maxSpeed4p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/mouse/yawConstant/maxSpeed1p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/mouse/yawConstant/maxSpeed2p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/mouse/yawConstant/maxSpeed3p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/mouse/yawConstant/maxSpeed4p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/mouse/yawConstant/maxSpeed5p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/mouse/yawConstant/maxSpeed6p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/mouse/yawConstant/maxSpeed7p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/mouse/yawForward/maxSpeed0p5/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/mouse/yawForward/maxSpeed1p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/mouse/yawForward/maxSpeed2p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/mouse/yawForward/maxSpeed3p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/mouse/yawForward/maxSpeed4p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/mouse/yawForward/maxSpeed5p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/mouse/yawForward/maxSpeed6p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/mouse/yawForward/maxSpeed7p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/oval/yawConstant/maxSpeed2p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/oval/yawConstant/maxSpeed3p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/oval/yawConstant/maxSpeed4p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/oval/yawForward/maxSpeed1p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/oval/yawForward/maxSpeed2p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/oval/yawForward/maxSpeed3p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/oval/yawForward/maxSpeed4p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/patrick/yawConstant/maxSpeed1p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/patrick/yawConstant/maxSpeed2p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/patrick/yawConstant/maxSpeed3p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/patrick/yawConstant/maxSpeed4p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/patrick/yawConstant/maxSpeed5p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/patrick/yawForward/maxSpeed0p5/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/patrick/yawForward/maxSpeed1p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/patrick/yawForward/maxSpeed2p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/patrick/yawForward/maxSpeed3p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/patrick/yawForward/maxSpeed4p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/picasso/yawConstant/maxSpeed0p5/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/picasso/yawConstant/maxSpeed1p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/picasso/yawConstant/maxSpeed2p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/picasso/yawConstant/maxSpeed3p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/picasso/yawConstant/maxSpeed4p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/picasso/yawConstant/maxSpeed5p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/picasso/yawConstant/maxSpeed6p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/picasso/yawForward/maxSpeed0p5/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/picasso/yawForward/maxSpeed1p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/picasso/yawForward/maxSpeed3p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/picasso/yawForward/maxSpeed4p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/picasso/yawForward/maxSpeed5p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/sid/yawConstant/maxSpeed1p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/sid/yawConstant/maxSpeed2p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/sid/yawConstant/maxSpeed3p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/sid/yawConstant/maxSpeed4p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/sid/yawConstant/maxSpeed5p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/sid/yawConstant/maxSpeed6p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/sid/yawConstant/maxSpeed7p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/sid/yawForward/maxSpeed0p5/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/sid/yawForward/maxSpeed1p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/sid/yawForward/maxSpeed2p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/sid/yawForward/maxSpeed3p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/sid/yawForward/maxSpeed4p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/sid/yawForward/maxSpeed5p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/sphinx/yawConstant/maxSpeed1p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/sphinx/yawConstant/maxSpeed2p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/sphinx/yawConstant/maxSpeed3p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/sphinx/yawConstant/maxSpeed4p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/sphinx/yawForward/maxSpeed1p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/sphinx/yawForward/maxSpeed2p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/sphinx/yawForward/maxSpeed3p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/sphinx/yawForward/maxSpeed4p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/star/yawConstant/maxSpeed1p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/star/yawConstant/maxSpeed2p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/star/yawConstant/maxSpeed3p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/star/yawConstant/maxSpeed4p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/star/yawConstant/maxSpeed5p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/star/yawForward/maxSpeed0p5/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/star/yawForward/maxSpeed1p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/star/yawForward/maxSpeed2p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/star/yawForward/maxSpeed3p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/star/yawForward/maxSpeed4p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/star/yawForward/maxSpeed5p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/thrice/yawConstant/maxSpeed1p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/thrice/yawConstant/maxSpeed2p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/thrice/yawConstant/maxSpeed3p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/thrice/yawConstant/maxSpeed4p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/thrice/yawConstant/maxSpeed5p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/thrice/yawConstant/maxSpeed6p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/thrice/yawConstant/maxSpeed7p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/thrice/yawForward/maxSpeed0p5/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/thrice/yawForward/maxSpeed1p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/thrice/yawForward/maxSpeed2p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/thrice/yawForward/maxSpeed3p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/thrice/yawForward/maxSpeed4p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/thrice/yawForward/maxSpeed5p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/thrice/yawForward/maxSpeed6p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/tiltedThrice/yawConstant/maxSpeed1p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/tiltedThrice/yawConstant/maxSpeed2p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/tiltedThrice/yawConstant/maxSpeed3p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/tiltedThrice/yawConstant/maxSpeed4p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/tiltedThrice/yawConstant/maxSpeed5p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/tiltedThrice/yawConstant/maxSpeed6p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/tiltedThrice/yawConstant/maxSpeed7p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/tiltedThrice/yawForward/maxSpeed0p5/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/tiltedThrice/yawForward/maxSpeed1p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/tiltedThrice/yawForward/maxSpeed2p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/tiltedThrice/yawForward/maxSpeed3p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/tiltedThrice/yawForward/maxSpeed4p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/tiltedThrice/yawForward/maxSpeed5p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/tiltedThrice/yawForward/maxSpeed6p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/winter/yawConstant/maxSpeed1p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/winter/yawConstant/maxSpeed2p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/winter/yawConstant/maxSpeed3p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/winter/yawConstant/maxSpeed4p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/winter/yawConstant/maxSpeed5p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/winter/yawForward/maxSpeed0p5/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/winter/yawForward/maxSpeed2p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/winter/yawForward/maxSpeed3p0/videos/
http://blackbird-dataset.mit.edu/BlackbirdDatasetData/winter/yawForward/maxSpeed4p0/videos/

Trajectory Generation

To allow methodical evaluation of algorithms across varying degrees of agility, we

choose to keep the translational trajectory of the quadrotor the same across varia-

tions and independently vary the following flight characteristics: speed and yaw for

each trajectory type. This variations can easily be achieved by exploiting the differ-

ential flatness properties of the quadrotor. Further, we include 18 distinct types of

trajectories with varying agility. The trajectories included in this dataset are shown

in Fig. 4-17. As can be seen in the figure, the variation in the translational trajec-

tories is high ranging from simple smooth trajectories (e.g oval, egg, half moon) to

trajectories that exhibit rapid changes in the direction of motion (e.g ampersand).

The included trajectories are classified by difficulty ([E]asy, [M]edium, [H]ard)

(shown in Table 4.7). These categories were empirically determined according to the

mean number of features tracked when running the visual inertial state estimation

pipeline from [19] on the visual environment each flight was originally flown in. These

trajectories range in complexity from an oval with constant yaw and altitude to tra-

jectories with varying speed, altitude, and yaw as they weave through visual obstacles

(e.g.the Sphinx) as shown in Figure 4-17. For flights that are rendered in multiple

environments (see Figure 4-18), some environments are harder for state estimation

than others due to the size and visual complexity of the environment.

To generate smoothly trackable trajectories, minimum snap optimization was per-

formed over a set of requested waypoint positions using the non-linear optimization

technique described in [33], [96], with boundary conditions to make the trajectory

periodic. Table 4.7 shows all the sequences included. There are 171 unique flights

of approximately three minutes each for a total of over 10 h and 60 km of ground

truth pose, inertial measurements, motor speeds, and rendered imagery. Trajectories

were designed for specific flight environments (e.g.Sphinx for Ancient Egypt Museum

Room) and are therefore particularly well suited to those environments, however,

where it does not result in virtual collisions with objects, the same trajectory can be

re-rendered in multiple environments using FlightGoggles. We have done this, for ex-

75

Figure 4-17: Diagrams of trajectory paths included in this dataset.

(a) Small Apartment (b) Large Apartment (c) Ancient Asia Museum
Room

(d) Ancient Egypt Museum
Room

(e) NYC Subway Station

Figure 4-18: Five rendering environments used in the dataset to generate visual data.

76

ample, on the benchmarks described in Section 4.4.6. Flights marked in Table 4.7 by

do not have visual data associated with them. These ‘figure 8’ flights were designed

to avoid dynamic biases by having the quadrotor fly roughly equal amounts of time

in all directions and at different speeds. They are therefore intended for calibration

of dynamics parameters in algorithms such as the ones in [86] and [97] that make use

of dynamics information.

Exteroceptive Sensor Generation

As an extra challenge for vision-based perception algorithms, this dataset extends

the work presented at ISER by [15] by providing 60Hz RGB image feeds with added

motion blur on the left stereo and downward-facing camera. Motion blur for the RGB

video feeds was generated at render time using dense optical flow, depth information,

and a rotary shutter model. The simulated exposure length for the motion blurred

cameras was set to 100% of the time between frames. Camera shader code from the

AirSim simulator by [37] was modified and integrated into FlightGoggles and used to

render semantic segmentation and depth images. Depth image streams are provided

for the left stereo and downward-facing camera at 60Hz. Semantically labeled image

streams were also generated for the left stereo and downward-facing camera at 60Hz

using 22 curated semantic labels. These semantic labels were manually generated

and added to all object mesh renderers viewable in each environment from the pre-

rendered trajectories. A list of all semantic labels along with their color mappings is

tabulated in Table 4.8. Additionally, Figure 4-19 contains a side-by-side comparison

of the various exteroceptive sensors types provided in this dataset.

Environments with Dynamic Obstacles

We provide a sequence with dynamic obstacles based on the previously existing NYC

Subway Station environment. In this added sequence, the subway train in the envi-

ronment travels in and out of the station on a loop, with a mean velocity of 10.0m s
�1.

77

(a) Left stereo
grayscale

(120Hz, no motion
blur)

(b) Left stereo RGB
(60Hz, with motion

blur)

(c) Left stereo
semantic labels

(60Hz)

(d) Left stereo depth
(60Hz)

(e) Downward-facing
grayscale camera

(120Hz, no motion
blur)

(f) Downward-facing
RGB camera

(60Hz, with motion
blur)

(g) Downward-facing
camera semantic

labels
(60Hz)

(h) Downward-facing
depth camera

(60Hz)

Figure 4-19: Camera image feeds provided in the pre-rendered dataset. Note that a
grayscale feed is provided for the right stereo camera at 120Hz, but is omitted from
this figure.

Sofa Cushion Book Cabinet Table Wall Floor Chair
Shelf Curtain Lights Window Screen Stairs Sky Statue

Column Rails Trashcan Train Sign Misc

Table 4.8: The color scheme used in that dataset for the 22 provided semantic labels.

78

Figure 4-20: VINS-Fusion against the ground truth for the ‘Ampersand’ trajectory
flown at 1m s

�1 and constant yaw in the environment ‘Small Apartment’.

4.4.6 Benchmarks

We evaluate the following state-of-the-art visual and visual-inertial estimation algo-

rithms on a select subset (see Appendix A.1) of the data: VINS-Fusion ([88]), with

and without IMU measurements, and ORB-SLAM2 ([89]). We abbreviate these as

VINS-IMU, VINS, and ORB-SLAM2, respectively. These are, at the time of this writ-

ing, the top two open-source vision-based odometry estimation algorithms in KITTI’s

odometry challenge leaderboard (http://www.cvlibs.net/datasets/kitti/eval_

odometry.php). For the purpose of this evaluation, the loop closure features of both

these algorithms is disabled. As an example, we show in Figure 4-20 the top view

of the estimated trajectory from VINS against the ground truth for the ‘Ampersand’

trajectory flown at 1m s
�1 and constant yaw in the environment ‘Small Apartment’.

Following [90], we measure the translation error, as percent of distance travelled,

and the yaw error, in degrees per meter travelled. We summarize these key perfor-

mance indicators (KPI’s) by taking the average of the errors evaluated at intervals

of a minimum of 5m. In Figures 4-21 and 4-22 we report the performance of the

three algorithms in terms of said KPI’s. The per-flight averages for each algorithm

79

http://www.cvlibs.net/datasets/kitti/eval_odometry.php
http://www.cvlibs.net/datasets/kitti/eval_odometry.php

(a) Translation error (b) Yaw error

Figure 4-21: Performance of state-of-the-art visual odometry algorithms, VINS-
Fusion (stereo and mono+IMU) and ORB-SLAM on 33 Blackbird flights. Note:
we only average the errors for 33 flights here for fair comparison, because these are
the flights for which all three estimators successfully tracked enough of the trajectory
to allow for the computation of these averages.

are available in the dataset, as are scripts to evaluate any pose estimation algorithm

by the same metrics.

Given the challenging nature of many of the flights in the dataset, however, the

estimators often fail to track some of those flights and diverge suddenly from the true

trajectory. Note here that for both VINS-Fusion and ORB-SLAM2 the parameters

used are the default parameters for the EuRoC dataset with appropriate modifications

for parameters such as image size and camera calibration. Tuning these parameters

could lead to better tracking performance on this dataset. We estimate that the

algorithm has ‘failed’ to track when the translation error is above 100% (of distance

travelled), and exclude those flights from the averages shown in Figure 4-22. For

transparency, in Appendix A.1, Tables A.1 to A.3 we report for each algorithm the

flights in which it ‘failed’ to track. We view the lost tracks as the challenge for state

estimation algorithms to provide robust tracking performance in the highly dynamic

scenarios that today’s robotics hardware is now capable of.

80

(a) VINS (b) VINS-IMU

(c) ORB-SLAM

Figure 4-22: Average performance of VINS, VINS-IMU, and ORB-SLAM on the
flights they successfully tracked, separated by difficulty level. Note that in this figure
the sets of plots are not the same for every algorithm (because they fail in different
flights), hence they are not plotted against each other here.

81

4.4.7 Known Issues

In this dataset, we synchronized motion capture ground truth data with onboard

IMU measurements using camera exposure timestamps provided by OptiTrack, IMU

measurement timestamps provided on arrival by our UAV’s TX2, and clock sync

and drift correction provided by Chrony, [23]. However, due to the complexity and

stochastic nature of the systems involved, we are only able to guarantee IMU and

ground truth temporal alignment to within ±5ms across all flights in this dataset.

This upper bound was verified in post process by cross correlation of IMU and ground

truth measurements for each flight.

Over the course of the various data recording sessions required to create this

dataset, at times we observed an increase in the mean tracking error of the motion

capture ground-truth setup with respect to the freshly calibrated system. This is

due to thermal expansion and contraction of the motion capture support beams.

Therefore, we recalibrated often to ensure that the mean tracking error was under

1.5mm for all flights.

4.5 Collision Avoidance of Dynamic Actors Using

Online Perception-aware Planning

This work proposes a preliminary online perception-aware quadrotor trajectory gen-

eration algorithm for quadrotors operating in close proximity to dynamic obstacles.

Perception-aware algorithms benefit from the exploitation of past measurements to

perform either opportunistic loop closure or increase the length of the feature tracks

to improve the quality of the state estimation. In this scenario, a human pointcloud

is rendered in real time based on skeleton tracking motion capture data, while a

quadrotor is simultaneously flying in a separate motion capture room (see Fig. 4-24

and Fig. 4-25). While both dynamic actors (i.e. human and quadrotor) are physically

in separate spaces, they are both in the same virtual environment (see Figure 4-23).

For the experiment, the drone is tasked with navigating between arbitrary, dynamic

82

Figure 4-23: A dynamic human actor in the FlightGoggles virtual environment is
rendered in real-time, based on skeleton tracking data of a human in a motion capture
suit with markers.

waypoints while optimizing for weighted visual feature co-visibility and obeying ob-

stacle constraints. All online trajectory replanning takes place on an in-flight UAV

carrying an NVIDIA Jetson TX2 computer.

4.5.1 Related Work

Differential flatness is often exploited for trajectory generation for quadrotors such as

in [33], [98], [99]. Quadrotor trajectory generation is a well studied problem. One of

the first approaches to generating trajectories was proposed by Mellinger and Kumar

[58]. They proposed to model the trajectory using polynomials between one keyframe

to the next. The optimization function that they used was minimizing the snap with

the intuition being that the snap was the first derivative which contained all of the

inputs to the quadrotor and minimizing this enforces smoothness in the trajectory.

Richter et al. [33] proposed extension to this work that bounds the actuator and add

a time penalty to the cost function with the intention of flying faster. Other methods

have been proposed that minimize the jerk [99] of the quadrotor which makes the

assumption that the yaw of the quadrotor is fixed and does not change during the

execution of the trajectory. Richter et al. [33] use a corridor constraint to deal with

collisions for polynomial trajectory planning for quadrotors. More recently, Liu et al.

83

Figure 4-24: Experiment of avoidance of a dynamic actor holding a virtual prop using
perception-aware planning. The drone in flight is running an online variant of the
perception-aware planning algorithm from [18] and used in Section 4.2. The drone is
tasked with navigating between dynamic waypoints while optimizing perception and
dynamic obstacle constraints. Motion capture ground truth is in green, VIO estimate
in blue, human pointcloud in orange, and the dynamic prop pointcloud is in green.

Figure 4-25: Dynamic actor using VR to interact with a drone in flight using a virtual
prop held by the actor. The drone in flight is circled in red, the dynamic prop held
by the actor is circled in white.

84

[100] propose a method that uses search trees to find feasible quadrotor trajectories

from pre-generated motion primitives. However, these methods still do not consider

dynamic obstacles and plan safe corridors based on pre-existing knowledge of the

world.

4.5.2 Proposed Algorithm

In this work, we use a two stage approach to trajectory generation. This is different

from the one stage approach used by [64] which uses a one stage approach to trajectory

generation. We choose to use a two stage process for ease of implementation and

faster computation. The key differences between a single stage trajectory generation

approach and a two stage approach are:

• The single stage can enforce visibility by planning over the full attitude of the

quadrotor (�, ✓,) whereas the two stage approach can only effectively plan for

the of the quadrotor. This can be mitigated in part by also enforcing a target

thrust vector.

• The single stage approach couples the controller and the planning in a single

model predictive control framework. The two stage approach decouples these

into planning and control.

• The single stage approach is not trivially parallelizable since the full dynamics

model of the quadrotor is used, whereas the two stage approach is trivially

parallelizable in the flat outputs of the quadrotor.

Algorithm 1 describes the proposed algorithm. The waypoints for the trajectory

are defined initially by the user and later refined in the case of collision. The yaw

angle is free, and we enforce the end points of the yaw trajectories to point towards the

weighted centroid of the important points in the environment. {w0, w1, ...wk, ..., wK}

is the set of waypoints defined in x, y, z for the quadrotor to follow and px, py, pz, p

are the polynomials in x, y, z, respectively. For both steps, we choose to use the

constrained objective function defined by [33].

85

Data: wk

Result:

h
[px, py, pz, p]

1
0 ... [px, py, pz, p]

k
k�1

i

Step 1: for k in K do

find px(t), py(t), pz(t) 8 t 2 (tk�1, tk) that solves

minimize
px, py, pz,↵

Z tk

↵tk�1

X

i:=[x,y,z]

✓
(4)

pi(↵t)

◆2

dt

subject to px(tk) = wk[x],

py(tk) = wk[y],

pz(tk) = wk[z],

px(tk�1) = wk�1[x],

py(tk�1) = wk�1[y],

pz(tk�1) = wk�1[z]

(4.3)

end

Step 2: for k in K do

find p (t) 8 t✏(tk�1, tk) that solves

minimize
p

Z tk

tk�1

(p̈ (t))
2
dt (4.4)

end

Algorithm 1: Proposed two step algorithm for optimizing feature co-visibility
while also obeying the dynamic collision constraint.

86

4.5.3 Collision Constraint

We represent the collision constraint similar to Richter et al [33]. We however make

the distinction between dynamic objects in the scene and static objects in the scene.

For the planned polynomial we check that the trajectory does not intersect with a

linearly propagated dynamics of the obstacle o for every obstacle. In practice, if

the collision constraint determines that the planned path will be in collision we add

another waypoint away from the velocity of the point in collision and try to find a

new polynomial and check the constraint again. A visual representation of this is

shown in Figure 4-26.

4.5.4 Implementation

The proposed methods for both trajectory generation and collision checking are im-

plemented in C++ for use on a Tegra TX2. The trajectory generation uses NLOPT

[101] and has a cut-off on the maximum runtime of the program to ensure that

we can get a usable trajectory in a reasonable time. The implementation interfaces

with the lightweight communications and marshaling framework used for interprocess

communication both on board the drone and the remote computer. The generated

trajectories are followed using the INDI controller from [92].

4.5.5 Experiments

Metrics for Perception

We use three metrics for perception:

• Mean features tracked between frames

• Mean total number of features (tracked + new)

• New features added to the tracker by loss of tracking or “aging"

87

Figure 4-26: Diagram of collision constraint with dynamic obstacle. On the left, the
dynamic obstacle is modeled using a line and it’s velocity is shown by the arrow.
The fitted polynomial intersects with the potential motion of the line. On the right,
adding another waypoint effectively draws the trajectory away from the potential
path of the projected obstacle.

Active Perception with VIO Pointcloud

For the first experiment we run the visual inertial odometry system presented by

Sayre-McCord et al. [19] with the features being republished to the active perception

system. The active perception system then generates paths to maximize the co-

visibility objective. In this experiment there are no dynamic objectives, and we

are only trying to measure the effect on the feature tracking process with active

perception. To measure the performance of this system, we plot the total number of

features used by the feature tracker and the total number of new features that are

added because of loss of tracking into the system. This can be seen in Figure 4-27. As

can be seen in the Figure, the total number of features and the tracked features are

very similar and shows that the active perception helps preserve longer feature tracks.

The number of new features added due to loss of tracking is very low and sporadic

over the course of the flight. The spikes in the new features being added can also be

attributed to “aging" where the feature tracker discards features after a certain track

length so that the optimization window can be smaller. The mean number of new

features added over the course of the entire flight is 0.9773.

88

0 10 20 30 40 50 60 70 80 90 100

Time (s)

0

50

100

150

200

250

300

N
u
m

b
e
r

o
f
F

e
a

tu
re

s
totFeatures

trackedFeatures

newFeatures

ransacOutliers

ransacIters

Figure 4-27: VIO tracked feature statistics from a flight using online perception-
aware planning using only the VIO pointcloud. The plot shows the number of tracked
features, the total number of features, the inlier and outliers from RANSAC and the
number of features added into the feature tracker at every time step.

Active Perception with VIO & Dynamic Pointcloud

For the second experiment, we run the same experiment with the addition of dynamic

sword prop in the environment. The dynamic prop is projected into the scene using

4 active motion capture markers. The yaw objective for the environment has two ob-

jectives now, with different weights. The centroid for the dynamic prop (i.e.dynamic

obstacle) is set to 2 and the weight for the environment is set to 1. The results show

that this still does not significantly affect the results. The mean tracked features for

this experiment is 112.18, the mean total features is 113.27 and the mean new features

added are 1.0919.

Active Perception and Collision Avoidance with VIO & Dynamic Point-

cloud

For the third set of experiments, we enabled the collision tracking objective which

takes quick reaction maneuvers to avoid being in collision. This has a more significant

result on the results for perception and often results in less features being tracked by

the feature tracker. We recorded three flights in this set of experiments. The mean

tracked features are 89.69, 98.26, 109.4935, the mean total number of features are

89

91.20, 100.06, 111.9149 and the mean new features are 1.5114, 1.801, 2.4215.

Collision Avoidance Ability

In this section, we measure the number of potential collisions identified by the system

during each of the flights of the quadrotor with dynamic actors in the scene. The

flights get progressively harder and the number of potential collisions identified by the

system is 31, 57 and 285. The quadrotor manages to successfully avoid the collisions

for around 45s in the last 2 flights before crashing into the net to avoid aggressive

motion towards the quadrotor.

4.6 Augmented Reality for Aircraft-in-the-loop Ex-

periments

We extend the work presented by Guerra et al. [17] by integrating a physical camera

with the FlightGoggles simulation framework to create an augmented reality simula-

tion. By integrating a physical camera with the FlightGoggles simulation framework,

one could selectively add virtual objects, actors, or environmental elements to a real

world camera stream. This extension could facilitate sim-to-real transfer by allow-

ing for researchers to overlay virtual elements in to a real camera stream, and hence

“adjust” the realism of the camera stream. For example, a researcher could overlay a

virtual human actor such as that in Figure 4-23 over a real camera stream in real-time

to facilitate safe testing of human-robot interaction in a real-world environment.

To test this system, we present an application where a virtual 3D “gate” from

FlightGoggles is overlayed onto a camera stream from a camera on-board a UAV.

Additionally, we outline a latency compensation method for dealing with delays in

the AR rendering pipeline and present some preliminary experimental results.

90

4.6.1 Related Work

In recent years, robotics research using augmented reality technologies falls into a

few categories. Many researchers are looking into using augmented reality in human-

robot joint tasks to help convey robot intention and perception of the world back to

their human collaborators. For example, Reardon et al. [102] use AR head-mounted-

displays to display robot-generated trajectory paths meant for the human to follow,

Walker et al. [103] use AR to signal robot motion intent and attention to human

teammates, Some robotics researchers are using AR to assist robot teleoperation, by

providing a more intuitive user interface for consuming data and inputting commands.

In this vein, Erat et al. [104] use AR to provide the human controller of the robot with

an exocentric viewpoint in order to assist complex exploration tasks and Hashimoto

et al. [105] overlay “virtual handles” around controllable portions of a robot displayed

from an exocentric view onto a 2D touch-screen in order to aid the human operator

of the robot. Finally, some researchers are using non-vision augmented reality to

simulate sensors for resource-constrained swarm platforms. In particular, Reina et

al. [106] and Antoun et al. [107] simulate virtual sensors such as gradient, heading,

and position sensors for inexpensive, small swarm robots and send measurements to

individual robots in real time.

To our knowledge, research has yet to appear that uses real-world camera-based

augmented reality for robot-in-the-loop experiments, which makes the augmented

reality extension to FlightGoggles, novel.

4.6.2 Latency Compensation using Homographies

Due to delays incurred during processing of motion capture, rendering of the aug-

mented image, and image transmission, the timestamp of the augmented reality (AR)

overlay differs from that of the most recent frame from the on-board camera.

In short, the augmented reality overlay image stream is delayed behind the cur-

rent camera image. This issue of timestamp delay can be resolved via buffering the

on-board camera stream or by reprojecting the latest augmented reality overlay into

91

the current image. To provide maximal performance, we opted to reproject the cam-

era overlay into the latest on-board camera image using homographies derived using

motion capture pose data.

First, we derive the relative transformation �TNED in camera pose traversed be-

tween the last AR overlay timestamp tAR and the timestamp of the most recent

on-board camera frame tCamera. By design, the pose of the virtual camera and the

on-board camera are identical and constant with respect to the UAV’s IMU frame.

Thus, Tmocap(ti) denotes the pose of the virtual & on-board camera in the motion

capture room at time ti, which allows us to calculate the relative transform between

the received AR camera frame and the current on-board camera frame.

�TNED = Tmocap(tCamera)� Tmocap(tAR) (4.5)

Recall that homographies are usually computed using relative transforms in cam-

era frame (EDN).

�TEDN = R
NED
EDN · T · (RNED

EDN)
T (4.6)

We then compute the homography between the received AR overlay frame and

the current image captured by the on-board camera using Equation 5.23 from Ma et

al. [108].

H = K · ((�REDN)
T
+

1

d
�tEDN ·NT

) ·K�1 (4.7)

In Equation (4.7), K is the camera calibration matrix of the on-board camera derived

using Kalibr[93] and �REDN and �tEDN are the rotation and translation components

of �TEDN . d is the distance between the optical center of the AR camera and the

plane created by the gate’s corners in FlightGoggles. N is the unit normal vector in

AR camera frame of the plane created by the gate’s corners. Note that the K matrix

of the FlightGoggles camera was changed to match that of the onboard camera.

Using this homography, we project all points X1 in the AR overlay image into

92

0ms delay 56ms delay 112ms delay

168ms delay 224ms delay 280ms delay

Figure 4-28: Six images captured with UAV on-board camera with augmented reality
overlay from FlightGoggles displaying effect of latency compensation. Note that the
movement of the AR gate is consistent with the movement of the camera, even as the
delay for the AR overlay is increased beyond the expected 50ms nominal delay.

image points X2 compatible with the current pose of the on-board camera [108].

X2 = H ·X1 (4.8)

We then composite X2 with the current image from the on-board camera.

4.6.3 Experiments

To test the augmented reality capabilities of FlightGoggles, we collected data from a

UAV with an on-board camera while flying under motion capture. We then modified

the normal FlightGoggles camera using render layers to render an augmented reality

overlay image of a 3D “gate” object suitable for compositing on top of the images

acquired from the on-board camera. In an offline manner, we applied delays between

0ms - 280ms to the AR overlay and applied the latency correction method outlined

in Section 4.6.2 and compared the registration quality of the resulting composited

image. Figure 4-28 shows the results of the latency compensation technique. This

offline proof-of-concept experiment suggests that AR technology could be used with

93

FlightGoggles in the future to perform mixed reality experiments and simulations.

94

Chapter 5

Future Work & Conclusions

5.1 Dynamic Obstacle and Actor Avoidance using

Perception-aware Planning

As can be seen in Section 4.5.5, we present a system that actively exploits past percep-

tion for perception-aware trajectory generation. We further add dynamic collisions

by virtually placing a human in the shared workspace via telepresence. The collision

avoidance module does predict potential collisions successfully and is able to avoid

collisions with the human and sword effectively. However, several future works still

remain in this problem. From a system point of view, we need to add the torque

and thrust constraints into the trajectory optimization problem to ensure that the

system is generating dynamically feasible trajectories. In future, we will also add

the visibility constraint in the form of a differentiable soft indicator function into the

optimization problem.

Important research challenges still remain in this domain. The control and vision

objectives are still coupled in a minimal time formulation and are often competing

objectives. For quadrotors with more limited torque authority as compared to thrust

authority, yaw rates are often limited and algorithms exist to prioritize the saturation

such as [109] but visibility objectives are not considered in the optimization and can

often be a competing objective between reaching a desired target location and target

95

viewpoint.

5.2 Sim-to-real Transfer using Augmented Reality

In Section 4.6, we presented a proof of concept experiment for using FlightGoggles to

create a real-time, low-latency augmented reality overlay using latency compensation

for a camera on-board a UAV in flight. Using augmented reality for vehicle-in-the-

loop experiments could facilitate faster development of safety-critical applications by

allowing researchers to add and remove virtual objects in the on-board camera feed.

Future work could explore the possibility of using augmented reality to facilitate sim-

to-real transfer of data-driven models, perhaps by allowing researchers to fine tune

their models on half-real, half-simulated visual feeds, where some elements of the

environment (such as cars and humans) are simulated for safety.

5.3 Conclusions

In this work, we present FlightGoggles, a new modular framework for realistic sim-

ulation to aid robotics testing and development. We also present some applications

of FlightGoggles and some recent work enabled by the FlightGoggles framework.

FlightGoggles is enabled by photogrammetry and virtual reality technologies. Heavy

utilization of photogrammetry helps provide realistic simulation of camera sensors.

Utilization of virtual reality allows direct integration of real vehicle motion and hu-

man behavior acquired in motion capture facilities directly into the simulation system.

FlightGoggles is being actively utilized by a community of robotics researchers. In

particular, FlightGoggles has served as the main test for selecting the contestants

for the AlphaPilot autonomous drone racing challenge and has been used to develop

large-scale datasets and perception-aware planning algorithms.

96

Appendix A

Tables

A.1 Blackbird Dataset Benchmarking Flights

Much of the work presented in this section has been submitted to The International

Journal of Robotics Research in 2019 [16].

Across all flights benchmarked we report the average translational estimation error

for VINS, VINS-IMU, and ORB-SLAM over 50m traveled with the 95% confidence

interval. A track is reported as “stopped” if the estimator stops tracking before 70m,

which is the distance required to compute the 50m average with a minimum of 5

samples at a minimum spacing of 5m. A track is reported as “failed” if it fails to

track at all.

97

Table A.1: Blackbird Dataset flights of category ‘Easy’ used for benchmarking.

Count Trajectory Environment Max speed Yaw Type Category VINS VINS-IMU ORB-SLAM
1 BentDice Ancient Asia Museum Room 0.5 Forward E failed failed failed
2 BentDice Ancient Asia Museum Room 1.0 Constant E 2.5±0.5 stopped failed
3 BentDice Ancient Asia Museum Room 1.0 Forward E 1.2±0.1 1.3±0.2 failed
4 BentDice Ancient Asia Museum Room 2.0 Constant E 2.7±0.3 2.8±0.2 stopped
5 BentDice Ancient Asia Museum Room 2.0 Forward E failed failed 1.4±0.9
6 BentDice Ancient Asia Museum Room 3.0 Forward E 10.6±0.5 13.3±0.4 1.7±1.4
7 Dice Ancient Asia Museum Room 1.0 Forward E 2.5±0.3 failed 0.5±0.5
8 Dice Ancient Asia Museum Room 2.0 Constant E 3.5±0.5 failed stopped
9 Dice Ancient Asia Museum Room 2.0 Forward E failed failed failed

10 Dice Ancient Asia Museum Room 3.0 Constant E 5.1±0.7 5.0±0.5 1.6±2.1
11 Dice Ancient Asia Museum Room 3.0 Forward E failed failed failed
12 HalfMoon Large Apartment Night Near Column 1.0 Constant E 1.1±0.2 1.5±0.8 stopped
13 HalfMoon Large Apartment Night Near Column 2.0 Constant E failed failed stopped
14 HalfMoon Large Apartment Night Near Column 3.0 Constant E 5.8±0.2 failed failed
15 HalfMoon Small Apartment 1.0 Constant E 0.9±0.1 failed 0.1±0.0
16 HalfMoon Small Apartment 2.0 Constant E 1.8±0.3 failed 1.1±0.6
17 HalfMoon Small Apartment 3.0 Constant E failed failed failed
18 HalfMoon Small Apartment 4.0 Constant E 6.6±0.3 failed failed
19 Patrick Ancient Asia Museum Room 0.5 Forward E stopped stopped failed
20 Patrick Ancient Asia Museum Room 1.0 Constant E 0.9±0.2 1.3±0.1 failed
21 Patrick Ancient Asia Museum Room 1.0 Forward E failed 1.9±0.6 0.4±0.1
22 Patrick Ancient Asia Museum Room 2.0 Constant E 2.1±0.4 2.3±0.3 failed
23 Patrick Ancient Asia Museum Room 2.0 Forward E failed 4.9±0.9 stopped
24 Patrick Ancient Asia Museum Room 3.0 Constant E 3.0±0.5 3.2±0.2 stopped
25 Patrick Ancient Asia Museum Room 3.0 Forward E failed failed failed
26 Patrick Ancient Asia Museum Room 4.0 Constant E 6.8±1.0 failed failed
27 Patrick Ancient Asia Museum Room 4.0 Forward E 18.3±1.1 failed failed
28 Sid NYC Subway Station 1.0 Constant E 2.1±0.9 1.8±1.3 failed
29 Sid NYC Subway Station 2.0 Constant E 3.8±0.9 failed failed
30 Sid NYC Subway Station 3.0 Constant E 9.6±1.1 1.8±0.1 1.2±1.2
31 Sid NYC Subway Station 4.0 Constant E 4.9±0.9 failed stopped
32 Sid NYC Subway Station 5.0 Constant E 4.9±0.6 6.4±0.3 2.0±1.2
33 Sid NYC Subway Station 6.0 Constant E 6.3±0.9 failed failed
34 Sid NYC Subway Station 7.0 Constant E failed failed failed
35 Thrice Ancient Asia Museum Room 0.5 Forward E failed failed stopped
36 Thrice Ancient Asia Museum Room 1.0 Constant E 1.3±0.5 1.1±0.2 stopped
37 Thrice Ancient Asia Museum Room 1.0 Forward E 0.6±0.1 failed stopped
38 Thrice Ancient Asia Museum Room 2.0 Constant E 1.5±0.2 2.2±0.1 failed
39 Thrice Ancient Asia Museum Room 2.0 Forward E failed failed stopped
40 Thrice Ancient Asia Museum Room 3.0 Constant E 2.6±0.3 3.4±0.2 failed
41 Thrice Ancient Asia Museum Room 3.0 Forward E 3.8±0.2 4.8±1.5 failed
42 Thrice Ancient Asia Museum Room 4.0 Constant E 2.5±0.3 failed failed
43 Thrice Ancient Asia Museum Room 4.0 Forward E failed failed stopped
44 TiltedThrice Ancient Asia Museum Room 0.5 Forward E 1.1±0.3 1.2±0.4 0.4±0.3
45 TiltedThrice Ancient Asia Museum Room 1.0 Constant E failed failed failed
46 TiltedThrice Ancient Asia Museum Room 1.0 Forward E 2.3±1.3 1.7±0.3 stopped
47 TiltedThrice Ancient Asia Museum Room 2.0 Constant E 2.8±0.5 2.3±0.3 1.0±0.6
48 TiltedThrice Ancient Asia Museum Room 2.0 Forward E 1.4±0.3 2.3±0.2 failed
49 TiltedThrice Ancient Asia Museum Room 3.0 Constant E 3.9±0.4 failed failed
50 TiltedThrice Ancient Asia Museum Room 3.0 Forward E 2.3±0.3 4.9±0.3 1.1±0.9
51 TiltedThrice Ancient Asia Museum Room 4.0 Constant E 7.0±0.7 failed stopped
52 TiltedThrice Ancient Asia Museum Room 4.0 Forward E failed failed failed
53 TiltedThrice Ancient Asia Museum Room 5.0 Constant E 9.0±0.9 2.5±0.2 stopped
54 TiltedThrice Ancient Asia Museum Room 5.0 Forward E 10.6±0.4 failed failed
55 TiltedThrice Ancient Asia Museum Room 6.0 Forward E failed 17.7±1.0 failed

98

Table A.2: Blackbird Dataset flights of category ‘Medium’ used for benchmarking.

Count Trajectory Environment Max speed Yaw Type Category VINS VINS-IMU ORB-SLAM
1 Ampersand Large Apartment Night Near Couches 1.0 Constant M 2.2±0.2 failed stopped
2 Ampersand Small Apartment 1.0 Constant M 1.0±0.2 1.9±0.1 stopped
3 Ampersand Small Apartment 2.0 Constant M 4.5±0.7 3.7±0.7 failed
4 BentDice Ancient Asia Museum Room 3.0 Constant M 4.3±0.5 failed failed
5 BentDice Ancient Asia Museum Room 4.0 Constant M failed failed failed
6 Dice Ancient Asia Museum Room 4.0 Constant M 11.4±0.9 failed failed
7 HalfMoon Large Apartment Night Near Column 1.0 Forward M failed failed stopped
8 HalfMoon Large Apartment Night Near Column 1.5 Forward M 1.7±0.1 failed failed
9 HalfMoon Large Apartment Night Near Column 2.0 Forward M 3.7±0.2 failed failed

10 HalfMoon Large Apartment Night Near Column 3.0 Forward M 7.6±0.4 20.9±0.7 failed
11 HalfMoon Large Apartment Night Near Column 4.0 Constant M 12.7±0.6 failed failed
12 HalfMoon Large Apartment Night Near Column 4.0 Forward M 6.0±0.5 21.7±1.1 failed
13 HalfMoon Small Apartment 1.0 Forward M failed failed failed
14 HalfMoon Small Apartment 1.5 Forward M 1.0±0.2 failed 0.8±0.2
15 HalfMoon Small Apartment 2.0 Forward M 2.4±0.3 failed failed
16 HalfMoon Small Apartment 3.0 Forward M failed failed failed
17 HalfMoon Small Apartment 4.0 Forward M 6.0±0.7 17.1±0.8 failed
18 Mouse NYC Subway Station 0.5 Forward M stopped 0.7±0.4 0.3±0.1
19 Mouse NYC Subway Station 1.0 Constant M 2.6±2.5 0.8±0.1 failed
20 Mouse NYC Subway Station 1.0 Forward M stopped failed stopped
21 Mouse NYC Subway Station 2.0 Constant M 3.7±2.2 1.8±0.2 0.3±0.1
22 Mouse NYC Subway Station 2.0 Forward M 15.8±1.6 3.0±0.5 stopped
23 Mouse NYC Subway Station 3.0 Constant M 1.1±0.1 4.2±0.6 0.8±0.7
24 Mouse NYC Subway Station 3.0 Forward M 11.5±4.6 failed failed
25 Mouse NYC Subway Station 4.0 Constant M 3.3±0.2 5.9±0.3 failed
26 Mouse NYC Subway Station 4.0 Forward M failed 9.7±5.4 1.7±2.1
27 Mouse NYC Subway Station 5.0 Constant M 5.5±0.3 failed failed
28 Mouse NYC Subway Station 5.0 Forward M 9.4±1.4 15.7±0.4 failed
29 Mouse NYC Subway Station 6.0 Constant M 7.3±0.4 failed stopped
30 Mouse NYC Subway Station 6.0 Forward M 17.4±5.9 failed failed
31 Mouse NYC Subway Station 7.0 Constant M 10.7±0.5 7.2±0.9 failed
32 Mouse NYC Subway Station 7.0 Forward M failed failed failed
33 Oval Large Apartment Day Near Kitchen 1.0 Forward M 1.6±0.1 failed failed
34 Oval Large Apartment Day Near Kitchen 2.0 Constant M 2.6±0.2 failed 0.3±0.4
35 Oval Large Apartment Day Near Kitchen 2.0 Forward M 1.8±0.1 6.2±2.9 failed
36 Oval Large Apartment Day Near Kitchen 3.0 Constant M failed failed failed
37 Oval Outdoor Patio Night 1.0 Forward M failed failed failed
38 Oval Outdoor Patio Night 2.0 Constant M 2.0±0.2 failed failed
39 Oval Outdoor Patio Night 2.0 Forward M 23.4±2.0 5.7±3.3 failed
40 Oval Outdoor Patio Night 3.0 Constant M 16.1±0.3 38.7±1.1 failed
41 Oval Small Apartment 1.0 Forward M failed failed failed
42 Oval Small Apartment 2.0 Constant M failed 3.1±0.2 stopped
43 Oval Small Apartment 2.0 Forward M 4.9±0.2 10.4±9.5 failed
44 Oval Small Apartment 3.0 Constant M 4.2±0.5 6.8±0.2 failed
45 Picasso NYC Subway Station 0.5 Constant M stopped failed stopped
46 Picasso NYC Subway Station 0.5 Forward M stopped failed stopped
47 Picasso NYC Subway Station 1.0 Constant M stopped 0.7±0.2 0.2±0.2
48 Picasso NYC Subway Station 1.0 Forward M failed failed 0.4±0.1
49 Picasso NYC Subway Station 2.0 Constant M 0.7±0.1 1.9±0.5 failed
50 Picasso NYC Subway Station 3.0 Constant M 2.3±0.3 3.1±0.7 0.8±0.3
51 Picasso NYC Subway Station 4.0 Constant M 3.4±0.6 24.5±10.8 2.5±1.5
52 Picasso NYC Subway Station 5.0 Constant M 6.5±1.8 17.8±2.2 stopped
53 Picasso NYC Subway Station 6.0 Constant M 12.5±1.3 21.5±6.1 stopped
54 Sid NYC Subway Station 0.5 Forward M failed stopped stopped
55 Sid NYC Subway Station 1.0 Forward M 0.5±0.2 1.3±0.2 failed
56 Sid NYC Subway Station 2.0 Forward M failed 9.3±11.6 failed
57 Sid NYC Subway Station 3.0 Forward M 2.6±0.3 5.7±0.4 stopped
58 Sid NYC Subway Station 4.0 Forward M 3.9±0.4 9.5±0.3 stopped
59 Sid NYC Subway Station 5.0 Forward M failed failed failed
60 Sphinx Ancient Egypt Museum Room 1.0 Forward M 1.0±0.2 1.8±0.2 stopped
61 Sphinx Ancient Egypt Museum Room 2.0 Forward M 2.2±0.3 failed failed
62 Sphinx Ancient Egypt Museum Room 3.0 Forward M 4.8±0.5 10.0±0.3 stopped
63 Sphinx Ancient Egypt Museum Room 4.0 Forward M failed failed failed
64 Star NYC Subway Station 0.5 Forward M failed stopped stopped
65 Star NYC Subway Station 1.0 Constant M 0.6±0.1 0.8±0.1 stopped
66 Star NYC Subway Station 1.0 Forward M 1.8±0.6 2.2±0.2 failed
67 Star NYC Subway Station 2.0 Constant M 2.2±0.2 3.3±0.7 stopped
68 Star NYC Subway Station 2.0 Forward M failed failed stopped
69 Star NYC Subway Station 3.0 Constant M 3.8±0.3 6.4±0.4 failed
70 Star NYC Subway Station 3.0 Forward M 13.8±2.6 9.9±0.8 failed
71 Star NYC Subway Station 4.0 Forward M 18.7±1.2 failed failed
72 Thrice Ancient Asia Museum Room 6.0 Constant M 3.8±0.8 6.0±0.9 failed
73 Thrice Ancient Asia Museum Room 6.0 Forward M 17.8±0.8 20.0±1.0 failed
74 Thrice Ancient Asia Museum Room 7.0 Constant M 10.2±1.3 5.8±0.8 failed
75 TiltedThrice Ancient Asia Museum Room 6.0 Constant M 9.5±1.0 failed failed
76 TiltedThrice Ancient Asia Museum Room 7.0 Constant M 12.4±1.7 6.7±0.8 stopped
77 Winter NYC Subway Station 1.0 Constant M 0.5±0.1 failed failed
78 Winter NYC Subway Station 2.0 Constant M 0.5±0.1 2.0±0.2 failed
79 Winter NYC Subway Station 3.0 Constant M 1.8±0.2 failed failed
80 Winter NYC Subway Station 4.0 Constant M 6.1±0.3 16.4±2.3 failed
81 Winter NYC Subway Station 5.0 Constant M 8.4±0.6 29.4±3.8 failed

99

Table A.3: Blackbird Dataset flights of category ‘Hard’ used for benchmarking.

Count Trajectory Environment Max speed Yaw Type Category VINS VINS-IMU ORB-SLAM
1 Ampersand Large Apartment Night Near Couches 1.0 Forward H 2.8±0.5 5.8±1.2 failed
2 Ampersand Small Apartment 1.0 Forward H failed 3.1±0.7 failed
3 Ampersand Small Apartment 2.0 Forward H 4.7±0.4 11.8±0.8 failed
4 Ampersand Small Apartment 3.0 Constant H 9.8±1.8 8.6±1.8 failed
5 Clover Large Apartment Night Near Couches 0.5 Forward H stopped failed failed
6 Clover Large Apartment Night Near Couches 1.0 Constant H stopped 1.1±0.2 0.1±0.1
7 Clover Large Apartment Night Near Couches 1.0 Forward H stopped failed failed
8 Clover Large Apartment Night Near Couches 2.0 Constant H 1.3±0.4 3.5±0.4 0.4±0.3
9 Clover Large Apartment Night Near Couches 2.0 Forward H 1.3±0.2 6.2±0.7 failed

10 Clover Large Apartment Night Near Couches 3.0 Constant H 2.4±0.2 5.2±0.5 1.7±0.7
11 Clover Large Apartment Night Near Couches 3.0 Forward H failed 10.2±0.6 failed
12 Clover Large Apartment Night Near Couches 4.0 Constant H 4.4±0.4 failed 2.6±1.0
13 Clover Large Apartment Night Near Couches 4.0 Forward H failed failed failed
14 Clover Large Apartment Night Near Couches 5.0 Constant H 8.1±0.4 failed failed
15 Clover Large Apartment Night Near Couches 5.0 Forward H 7.2±1.0 failed failed
16 Clover Large Apartment Night Near Couches 6.0 Constant H failed 8.5±1.0 failed
17 Oval Large Apartment Day Near Kitchen 3.0 Forward H 4.5±0.4 18.8±3.7 failed
18 Oval Large Apartment Day Near Kitchen 4.0 Constant H failed 19.3±4.6 failed
19 Oval Large Apartment Day Near Kitchen 4.0 Forward H 9.8±0.4 failed failed
20 Oval Outdoor Patio Night 3.0 Forward H 61.4±3.6 failed failed
21 Oval Outdoor Patio Night 4.0 Constant H failed failed failed
22 Oval Outdoor Patio Night 4.0 Forward H failed failed failed
23 Oval Small Apartment 3.0 Forward H 4.6±0.5 failed failed
24 Oval Small Apartment 4.0 Constant H 9.4±1.1 14.3±3.4 failed
25 Oval Small Apartment 4.0 Forward H 4.8±0.4 20.0±4.2 failed
26 Patrick Ancient Asia Museum Room 5.0 Constant H 10.9±1.3 7.9±1.3 failed
27 Picasso NYC Subway Station 3.0 Forward H 2.3±0.3 failed failed
28 Picasso NYC Subway Station 4.0 Forward H failed 19.9±1.4 failed
29 Picasso NYC Subway Station 5.0 Forward H 9.0±0.8 failed failed
30 Sphinx Ancient Egypt Museum Room 1.0 Constant H stopped 1.3±0.3 failed
31 Sphinx Ancient Egypt Museum Room 2.0 Constant H 1.3±0.2 2.4±0.2 failed
32 Sphinx Ancient Egypt Museum Room 3.0 Constant H 3.2±0.3 failed stopped
33 Sphinx Ancient Egypt Museum Room 4.0 Constant H 6.7±0.6 failed failed
34 Star NYC Subway Station 4.0 Constant H failed 8.3±0.6 failed
35 Star NYC Subway Station 5.0 Constant H 8.6±1.3 failed failed
36 Star NYC Subway Station 5.0 Forward H failed 16.3±1.6 failed

100

Appendix B

Figures
The work presented in this section has been submitted to The International Journal

of Robotics Research in 2019 [16].

http://blackbird-dataset.mit.edu/
trajectoryOffsets.yaml

fileIndex.csv
renderUtilities

. . .

playbackUtilities
. . .

BlackbirdDatasetData
<trajectoryName> {ampersand, oval, . . .}

<yawType> {yawConstant, yawForward}
maxSpeed<V> {0p5, 1p0, 2p0, . . ., 13p8}

<trajectoryName> maxSpeed<V>.{bag, log}

groundTruthFlightNormalizationOffset.csv

<trajectoryName> maxSpeed<V> csv
<topicName>.csv
. . .

<trajectoryName> maxSpeed<V> <envName>
Camera_Left_RGB

Camera_Left_Gray
lossless.mov
video_frame_n_sec_timestamps.txt

. . .

previewVideos
<renderName>.mp4

Figure B-1: Blackbird dataset file hierarchy.

101

102

Bibliography

[1] R. A. Brooks and M. J. Mataric, “Real robots, real learning problems,” in
Robot learning, Springer, 1993, pp. 193–213.

[2] H. Chiu, V. Murali, R. Villamil, G. D. Kessler, S. Samarasekera, and R. Ku-
mar, “Augmented reality driving using semantic geo-registration,” in IEEE
Conference on Virtual Reality and 3D User Interfaces (VR), 2018, pp. 423–
430. doi: 10.1109/VR.2018.8447560.

[3] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bohez, and
V. Vanhoucke, “Sim-to-real: Learning agile locomotion for quadruped robots,”
arXiv preprint arXiv:1804.10332, 2018.

[4] Unreal Engine, https : / / www . unrealengine . com/, [Online; accessed 28-
February-2019], 2019.

[5] Unity3d Game Engine, https://unity3d.com/, [Online; accessed 28-February-
2019], 2019.

[6] “Nvidia Turing GPU architecture,” Nvidia Corporation, Tech. Rep. 09183,
2018.

[7] T. Erez, Y. Tassa, and E. Todorov, “Simulation tools for model-based robotics:
Comparison of Bullet, Havok, MuJoCo, ODE and Physx,” in IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2015, pp. 4397–4404.

[8] N. Koenig and A. Howard, “Design and use paradigms for Gazebo, an open-
source multi-robot simulator,” in IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), 2004, pp. 2149–2154.

[9] J. Meyer, A. Sendobry, S. Kohlbrecher, U. Klingauf, and O. Von Stryk, “Com-
prehensive simulation of quadrotor UAVs using ROS and Gazebo,” in Interna-
tional Conference on Simulation, Modeling, and Programming for Autonomous
Robots, Springer, 2012, pp. 400–411.

[10] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, “RotorS: A modular Gazebo
MAV simulator framework,” in Robot Operating System (ROS), Springer, 2016,
pp. 595–625.

[11] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity visual and
physical simulation for autonomous vehicles,” in Field and Service Robotics,
Springer, 2018, pp. 621–635.

103

https://doi.org/10.1109/VR.2018.8447560
https://www.unrealengine.com/
https://unity3d.com/

[12] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M. Lopez, “The Synthia
dataset: A large collection of synthetic images for semantic segmentation of ur-
ban scenes,” in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016, pp. 3234–3243.

[13] A. Gaidon, Q. Wang, Y. Cabon, and E. Vig, “Virtual worlds as proxy for
multi-object tracking analysis,” in CVPR, 2016.

[14] A. Handa, T. Whelan, J. McDonald, and A. Davison, “A benchmark for RGB-
D visual odometry, 3D reconstruction and SLAM,” in IEEE Intl. Conf. on
Robotics and Automation, ICRA, Hong Kong, China, May 2014.

[15] A. Antonini, W. Guerra, V. Murali, T. Sayre-McCord, and S. Karaman, “The
Blackbird dataset: A large-scale dataset for UAV perception in aggressive
flight,” in International Symposium on Experimental Robotics (ISER), 2018.

[16] A. Antonini*, W. Guerra*, V. Murali, T. Sayre-McCord, and S. Karaman,
“The Blackbird UAV Dataset,” The International Journal of Robotics Research
(IJRR), 2019 (Invited Paper. Submitted for review.)

[17] W. Guerra, E. Tal, V. Murali, G. Ryou, and S. Karaman, “Flightgoggles: Pho-
torealistic sensor simulation for perception-driven robotics using photogram-
metry and virtual reality,” in IEEE International Conference on Intelligent
Robots and Systems (IROS), 2019.

[18] V. Murali, I. Spasojevic, W. Guerra, and S. Karaman, “Perception-aware tra-
jectory generation for aggressive quadrotor flight using differential flatness,”
in American Control Conference (ACC), 2019.

[19] T. Sayre-McCord, W. Guerra, A. Antonini, J. Arneberg, A. Brown, G. Cav-
alheiro, Y. Fang, A. Gorodetsky, D. McCoy, S. Quilter, F. Riether, E. Tal, Y.
Terzioglu, L. Carlone, and S. Karaman, “Visual-inertial navigation algorithm
development using photorealistic camera simulation in the loop,” in IEEE In-
ternational Conference on Robotics and Automation (ICRA), 2018, pp. 2566–
2573.

[20] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
and A. Y. Ng, “ROS: An open-source robot operating system,” in ICRA Work-
shop on Open Source Software, 2009.

[21] A. S. Huang, E. Olson, and D. C. Moore, “LCM: Lightweight communications
and marshalling,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2010, pp. 4057–4062.

[22] F. Akgul, ZeroMQ. Packt Publishing Ltd, 2013.
[23] M. Lichvar, Chrony, https://chrony.tuxfamily.org/, 2017. (visited on

04/29/2018).
[24] Reality Capture, https://www.capturingreality.com/Product, [Online;

accessed 28-February-2019], 2019.

104

https://chrony.tuxfamily.org/
https://www.capturingreality.com/Product

[25] S. Lachambre, S. Lagarde, and C. Jover, “Unity photogrammetry workflow,”
Unity Developer—Rendering Research. Retrieved from https: // unity3d.
com/ files/ solutions/ photogrammetry/ Unity-Photogrammetry-Workflow_
2017-07_ v2. pdf , 2017.

[26] High Definition Render Pipeline overview, https://docs.unity3d.com/
Packages/com.unity.render-pipelines.high-definition@6.9/manual/
index.html, [Online; accessed 30-July-2019], 2019.

[27] LightWare SF11/B Laser Range Finder, http://documents.lightware.
co.za/SF11%20-%20Laser%20Altimeter%20Manual%20-%20Rev%208.pdf,
[Online; accessed 28-February-2019], 2019.

[28] AlphaPilot – Lockheed Martin AI Drone Racing Innovation Challenge, https:
//www.herox.com/alphapilot, [Online; accessed 28-February-2019], 2019.

[29] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “On-manifold preinte-
gration theory for fast and accurate visual-inertial navigation,” IEEE Trans-
actions on Robotics, pp. 1–18, 2015.

[30] C. Beall and F. Dellaert, “Appearance-based localization across seasons in a
metric map,” 6th PPNIV, Chicago, USA, 2014.

[31] P. F. Alcantarilla, S. Stent, G. Ros, R. Arroyo, and R. Gherardi, “Street-view
change detection with deconvolutional networks,” Autonomous Robots, vol. 42,
no. 7, pp. 1301–1322, 2018.

[32] E. Tal and S. Karaman, “Accurate tracking of aggressive quadrotor trajectories
using incremental nonlinear dynamic inversion and differential flatness,” in
IEEE Conference on Decision and Control (CDC), 2018, pp. 4282–4288.

[33] C. Richter, A. Bry, and N. Roy, “Polynomial trajectory planning for aggressive
quadrotor flight in dense indoor environments,” in Robotics Research, Springer,
2016, pp. 649–666.

[34] A. Gaidon, Q. Wang, Y. Cabon, and E. Vig, “Virtual worlds as proxy for multi-
object tracking analysis,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 4340–4349.

[35] S. R. Richter, V. Vineet, S. Roth, and V. Koltun, “Playing for data: Ground
truth from computer games,” in Computer Vision – ECCV 2016: 14th Eu-
ropean Conference, Amsterdam, The Netherlands, October 11-14, 2016, Pro-
ceedings, Part II, B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds. Springer
International Publishing, 2016, pp. 102–118, isbn: 978-3-319-46475-6.

[36] B. Kaneva, A. Torralba, and W. T. Freeman, “Evaluation of image features us-
ing a photorealistic virtual world,” in Intl. Conf. on Computer Vision (ICCV),
IEEE, 2011, pp. 2282–2289.

[37] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “AirSim: High-fidelity visual and
physical simulation for autonomous vehicles,” in Field and Service Robotics,
2017. eprint: arXiv:1705.05065.

105

https://unity3d.com/files/solutions/photogrammetry/Unity-Photogrammetry-Workflow_2017-07_v2.pdf
https://unity3d.com/files/solutions/photogrammetry/Unity-Photogrammetry-Workflow_2017-07_v2.pdf
https://unity3d.com/files/solutions/photogrammetry/Unity-Photogrammetry-Workflow_2017-07_v2.pdf
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@6.9/manual/index.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@6.9/manual/index.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@6.9/manual/index.html
http://documents.lightware.co.za/SF11%20-%20Laser%20Altimeter%20Manual%20-%20Rev%208.pdf
http://documents.lightware.co.za/SF11%20-%20Laser%20Altimeter%20Manual%20-%20Rev%208.pdf
https://www.herox.com/alphapilot
https://www.herox.com/alphapilot
arXiv:1705.05065

[38] D. G. Kottas, J. A. Hesch, S. L. Bowman, and S. I. Roumeliotis, “On the
consistency of vision-aided inertial navigation,” in Intl. Sym. on Experimental
Robotics (ISER), 2012.

[39] J. Hesch, D. Kottas, S. Bowman, and S. Roumeliotis, “Camera-IMU-based
localization: Observability analysis and consistency improvement,” Intl. J. of
Robotics Research, vol. 33, no. 1, pp. 182–201, 2014.

[40] A. Mourikis and S. Roumeliotis, “A dual-layer estimator architecture for long-
term localization,” in Proc. of the Workshop on Visual Localization for Mobile
Platforms at CVPR, Jun. 2008.

[41] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale, “Keyframe-
based visual-inertial SLAM using nonlinear optimization,” Intl. J. of Robotics
Research, 2015.

[42] M. Bryson, M. Johnson-Roberson, and S. Sukkarieh, “Airborne smoothing and
mapping using vision and inertial sensors,” in IEEE Intl. Conf. on Robotics
and Automation (ICRA), Kobe, Japan, 2009, pp. 3143–3148.

[43] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “IMU preintegration
on manifold for efficient visual-inertial maximum-a-posteriori estimation,” in
Robotics: Science and Systems (RSS), 2015.

[44] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “On-Manifold Prein-
tegration for Real-Time Visual-Inertial Odometry,” IEEE Transactions on
Robotics, pp. 1–20, 2016, issn: 15523098. doi: 10.1109/TRO.2016.2597321.

[45] R. Mur-Artal, J. Montiel, and J. Tardós, “ORB-SLAM: A versatile and accu-
rate monocular SLAM system,” IEEE Trans. Robotics, vol. 31, no. 5, pp. 1147–
1163, 2015.

[46] J. Engel, J. Sturm, and D. Cremers, “Camera-based navigation of a low-
cost quadrocopter,” IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), vol. 320, p. 240, 2012.

[47] M. Bloesch, S. Weiss, D. Scaramuzza, and R. Siegwart, “Vision based MAV
navigation in unknown and unstructured environments,” in IEEE Intl. Conf.
on Robotics and Automation (ICRA), 2010, pp. 21–28.

[48] S. Weiss, M. W. Achtelik, S. Lynen, M. C. Achtelik, L. Kneip, M. Chli, and R.
Siegwart, “Monocular vision for long-term micro aerial vehicle state estimation:
A compendium,” J. of Field Robotics, vol. 30, no. 5, pp. 803–831, 2013.

[49] G. Klein and D. Murray, “Parallel tracking and mapping for small AR workspaces,”
in IEEE and ACM Intl. Sym. on Mixed and Augmented Reality (ISMAR),
Nara, Japan, Nov. 2007, pp. 225–234.

[50] S. Shen, Y. Mulgaonkar, N. Michael, and V. Kumar, “Vision-based state esti-
mation and trajectory control towards high-speed flight with a quadrotor,” in
Robotics: Science and Systems (RSS), 2013.

106

https://doi.org/10.1109/TRO.2016.2597321

[51] C. Forster, M. Pizzoli, and D. Scaramuzza, “SVO: Fast Semi-Direct Monocular
Visual Odometry,” in IEEE Intl. Conf. on Robotics and Automation (ICRA),
2014. doi: 10.1109/ICRA.2014.6906584.

[52] M. Faessler, F. Fontana, C. Forster, E. Mueggler, M. Pizzoli, and D. Scara-
muzza, “Autonomous, vision-based flight and live dense 3D mapping with a
quadrotor micro aerial vehicle.,” J. of Field Robotics, vol. 33, no. 4, pp. 431–
450, 2016.

[53] G. Loianno and V. Kumar, “Vision-based fast navigation of micro aerial vehi-
cles,” in Proc. SPIE, Micro- and Nanotechnology Sensors, Systems, and Ap-
plications, 2016.

[54] Z. Zhang, A. Suleiman, L. Carlone, V. Sze, and S. Karaman, “Visual-Inertial
Odometry on Chip: An Algorithm-and-Hardware Co-design Approach,” in
Robotics Science and Systems, 2017.

[55] Y. Lin, F. Gao, T. Qin, W. Gao, T. Liu, W. Wu, Z. Yang, and S. Shen,
“Autonomous aerial navigation using monocular visual-inertial fusion,” J. of
Field Robotics, vol. 00, pp. 1–29, 2017.

[56] G. Loianno, C. Brunner, G. McGrath, and V. Kumar, “Estimation, Control,
and Planning for Aggressive Flight With a Small Quadrotor With a Single
Camera and IMU,” IEEE Robotics and Automation Letters, vol. 2, no. 2,
pp. 404–411, 2017, issn: 2377-3766. doi: 10.1109/LRA.2016.2633290.

[57] D. Falanga, E. Mueggler, M. Faessler, and D. Scaramuzza, “Aggressive quadro-
tor flight through narrow gaps with onboard sensing and computing,” in IEEE
Intl. Conf. on Robotics and Automation (ICRA), 2017.

[58] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and con-
trol for quadrotors,” in 2011 IEEE International Conference on Robotics and
Automation, IEEE, 2011, pp. 2520–2525.

[59] M. W. Mueller, M. Hehn, and R. D’Andrea, “A computationally efficient mo-
tion primitive for quadrocopter trajectory generation,” IEEE Transactions on
Robotics, vol. 31, no. 6, pp. 1294–1310, 2015.

[60] A. Bry and N. Roy, “Rapidly-exploring random belief trees for motion planning
under uncertainty,” in Robotics and Automation (ICRA), 2011 IEEE Interna-
tional Conference on, IEEE, 2011, pp. 723–730.

[61] J. Van Den Berg, P. Abbeel, and K. Goldberg, “Lqg-mp: Optimized path
planning for robots with motion uncertainty and imperfect state information,”
The International Journal of Robotics Research, vol. 30, no. 7, pp. 895–913,
2011.

[62] M. Sheckells, G. Garimella, and M. Kobilarov, “Optimal visual servoing for
differentially flat underactuated systems,” in Intelligent Robots and Systems
(IROS), 2016 IEEE/RSJ International Conference on, IEEE, 2016, pp. 5541–
5548.

107

https://doi.org/10.1109/ICRA.2014.6906584
https://doi.org/10.1109/LRA.2016.2633290

[63] B. Penin, R. Spica, P. R. Giordano, and F. Chaumette, “Vision-based minimum-
time trajectory generation for a quadrotor uav,” in Intelligent Robots and
Systems (IROS), 2017 IEEE/RSJ International Conference on, IEEE, 2017,
pp. 6199–6206.

[64] D. Falanga, P. Foehn, P. Lu, and D. Scaramuzza, “PAMPC: Perception-aware
model predictive control for quadrotors,” in IEEE/RSJ Int. Conf. Intell. Robot.
Syst. (IROS), 2018.

[65] L. Carlone and S. Karaman, “Attention and anticipation in fast visual-inertial
navigation,” in Robotics and Automation (ICRA), 2017 IEEE International
Conference on, IEEE, 2017, pp. 3886–3893.

[66] E. Tal and S. Karaman, “Precision tracking of aggressive quadrotor trajectories
using incremental nonlinear dynamic inversion and differential flatness,” in
Decision and Control (CDC), 2018 IEEE 57th Conference on, IEEE, 2018.

[67] G. L. Smith, S. F. Schmidt, and L. A. McGee, “Application of statistical
filter theory to the optimal estimation of position and velocity on board a
circumlunar vehicle,” 1962.

[68] S. J. Julier and J. K. Uhlmann, “New extension of the kalman filter to non-
linear systems,” in Signal processing, sensor fusion, and target recognition VI,
International Society for Optics and Photonics, vol. 3068, 1997, pp. 182–194.

[69] J. S. Liu and R. Chen, “Sequential monte carlo methods for dynamic systems,”
Journal of the American Statistical Association, vol. 93, no. 443, pp. 1032–
1044, 1998. doi: 10.1080/01621459.1998.10473765.

[70] S. Madgwick, “An efficient orientation filter for inertial and inertial/magnetic
sensor arrays,” Report x-io and University of Bristol (UK), vol. 25, pp. 113–
118, 2010.

[71] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and F. Dellaert,
“Isam2: Incremental smoothing and mapping using the bayes tree,” The Inter-
national Journal of Robotics Research, vol. 31, no. 2, pp. 216–235, 2012.

[72] M. Bloesch, S. Omari, M. Hutter, and R. Siegwart, “Robust visual inertial
odometry using a direct ekf-based approach,” in 2015 IEEE/RSJ international
conference on intelligent robots and systems (IROS), IEEE, 2015, pp. 298–304.

[73] M. Bloesch, M. Burri, S. Omari, M. Hutter, and R. Siegwart, “Iterated ex-
tended kalman filter based visual-inertial odometry using direct photometric
feedback,” The International Journal of Robotics Research, vol. 36, no. 10,
pp. 1053–1072, 2017.

[74] T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile monocular
visual-inertial state estimator,” IEEE Transactions on Robotics, vol. 34, no. 4,
pp. 1004–1020, 2018.

[75] M. Kamel, T. Stastny, K. Alexis, and R. Siegwart, “Model predictive control for
trajectory tracking of unmanned aerial vehicles using robot operating system,”
in Robot Operating System (ROS), Springer, 2017, pp. 3–39.

108

https://doi.org/10.1080/01621459.1998.10473765

[76] S. Bouabdallah and R. Siegwart, “Backstepping and sliding-mode techniques
applied to an indoor micro quadrotor,” in Proceedings of the 2005 IEEE inter-
national conference on robotics and automation, IEEE, 2005, pp. 2247–2252.

[77] D. Falanga, E. Mueggler, M. Faessler, and D. Scaramuzza, “Aggressive quadro-
tor flight through narrow gaps with onboard sensing and computing using
active vision,” in 2017 IEEE International Conference on Robotics and Au-
tomation (ICRA), IEEE, 2017, pp. 5774–5781.

[78] K. Mohta, M. Watterson, Y. Mulgaonkar, S. Liu, C. Qu, A. Makineni, K.
Saulnier, K. Sun, A. Zhu, J. Delmerico, et al., “Fast, autonomous flight in gps-
denied and cluttered environments,” Journal of Field Robotics, vol. 35, no. 1,
pp. 101–120, 2018.

[79] SubT, DARPA Subterranean Challenge, https://www.darpa.mil/program/
darpa-subterranean-challenge, [Online; accessed 6-July-2019], 2019.

[80] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W. Achte-
lik, and R. Siegwart, “The euroc micro aerial vehicle datasets,” The Interna-
tional Journal of Robotics Research, vol. 35, no. 10, pp. 1157–1163, 2016.

[81] K. Sun, K. Mohta, B. Pfrommer, M. Watterson, S. Liu, Y. Mulgaonkar, C. J.
Taylor, and V. Kumar, “Robust stereo visual inertial odometry for fast au-
tonomous flight,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 965–
972, 2018.

[82] A. L. Majdik, C. Till, and D. Scaramuzza, “The zurich urban micro aerial
vehicle dataset,” The International Journal of Robotics Research, vol. 36, no. 3,
pp. 269–273, 2017. doi: 10.1177/0278364917702237. eprint: https://doi.
org/10.1177/0278364917702237. [Online]. Available: https://doi.org/10.
1177/0278364917702237.

[83] J. Delmerico, T. Cieslewski, H. Rebecq, M. Faessler, and D. Scaramuzza, “Are
we ready for autonomous drone racing? the uzhfpv drone racing dataset,” in
IEEE Int. Conf. Robot. Autom.(ICRA), 2019.

[84] A. R. Vidal, H. Rebecq, T. Horstschaefer, and D. Scaramuzza, “Ultimate slam?
combining events, images, and imu for robust visual slam in hdr and high-speed
scenarios,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 994–1001,
2018.

[85] E. Mueggler, G. Gallego, H. Rebecq, and D. Scaramuzza, “Continuous-time
visual-inertial odometry for event cameras,” IEEE Transactions on Robotics,
vol. 34, no. 6, pp. 1425–1440, 2018.

[86] A. Antonini, J. Leonard, and S. Karaman, “Pre-Integrated Dynamics Factors
and a Dynamical Agile Visual-Inertial Dataset for UAV Perception,” Master’s
thesis, Massachusetts Institute of Technology, 2018. [Online]. Available: http:
//hdl.handle.net/1721.1/118667.

109

https://www.darpa.mil/program/darpa-subterranean-challenge
https://www.darpa.mil/program/darpa-subterranean-challenge
https://doi.org/10.1177/0278364917702237
https://doi.org/10.1177/0278364917702237
https://doi.org/10.1177/0278364917702237
https://doi.org/10.1177/0278364917702237
https://doi.org/10.1177/0278364917702237
http://hdl.handle.net/1721.1/118667
http://hdl.handle.net/1721.1/118667

[87] B. Nisar, P. Foehn, D. Falanga, and D. Scaramuzza, “Vimo: Simultaneous
visual inertial model-based odometry and force estimation,” in Proceedings of
Robotics: Science and Systems, FreiburgimBreisgau, Germany, Jun. 2019. doi:
10.15607/RSS.2019.XV.082.

[88] T. Qin, J. Pan, S. Cao, and S. Shen, A general optimization-based framework
for local odometry estimation with multiple sensors, 2019. eprint: arXiv:1901.
03638.

[89] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós, “ORB-SLAM: A versa-
tile and accurate monocular SLAM system,” IEEE Transactions on Robotics,
vol. 31, no. 5, pp. 1147–1163, 2015. doi: 10.1109/TRO.2015.2463671.

[90] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the
kitti vision benchmark suite,” in Conference on Computer Vision and Pattern
Recognition (CVPR), 2012.

[91] S. Wang, M. Bai, G. Mattyus, H. Chu, W. Luo, B. Yang, J. Liang, J. Cheverie,
S. Fidler, and R. Urtasun, “Torontocity: Seeing the world with a million eyes,”
in 2017 IEEE International Conference on Computer Vision (ICCV), IEEE,
2017, pp. 3028–3036.

[92] E. Tal and S. Karaman, “Accurate tracking of aggressive quadrotor trajectories
using incremental nonlinear dynamic inversion and differential flatness,” in
2018. Proceedings. 57th IEEE Conference on Decision and Control, IEEE,
2018.

[93] P. Furgale, J. Rehder, and R. Siegwart, “Unified temporal and spatial calibra-
tion for multi-sensor systems,” in 2013 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Nov. 2013, pp. 1280–1286. doi:
10.1109/IROS.2013.6696514.

[94] A. Savitzky and M. J. Golay, “Smoothing and differentiation of data by simpli-
fied least squares procedures.,” Analytical chemistry, vol. 36, no. 8, pp. 1627–
1639, 1964.

[95] E. Coumans, “Bullet physics simulation,” in ACM SIGGRAPH 2015 Courses,
ACM, 2015, p. 7.

[96] M. Burri, H. Oleynikova, M. W. Achtelik, and R. Siegwart, “Real-time visual-
inertial mapping, re-localization and planning onboard mavs in unknown envi-
ronments,” in 2015 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), IEEE, 2015, pp. 1872–1878.

[97] B. Nisar, P. Foehn, D. Falanga, and D. Scaramuzza, “Vimo: Simultaneous
visual inertial model-based odometry and force estimation,” IEEE Robotics
and Automation Letters, vol. 4, no. 3, pp. 2785–2792, Jul. 2019, issn: 2377-
3766. doi: 10.1109/LRA.2019.2918689.

110

https://doi.org/10.15607/RSS.2019.XV.082
arXiv:1901.03638
arXiv:1901.03638
https://doi.org/10.1109/TRO.2015.2463671
https://doi.org/10.1109/IROS.2013.6696514
https://doi.org/10.1109/LRA.2019.2918689

[98] G. Loianno, C. Brunner, G. McGrath, and V. Kumar, “Estimation, control,
and planning for aggressive flight with a small quadrotor with a single camera
and imu,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 404–411,
2017.

[99] M. W. Mueller, M. Hehn, and R. D’Andrea, “A computationally efficient al-
gorithm for state-to-state quadrocopter trajectory generation and feasibility
verification,” in Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ In-
ternational Conference on, IEEE, 2013, pp. 3480–3486.

[100] S. Liu, M. Watterson, K. Mohta, K. Sun, S. Bhattacharya, C. J. Taylor, and V.
Kumar, “Planning dynamically feasible trajectories for quadrotors using safe
flight corridors in 3-d complex environments,” IEEE Robotics and Automation
Letters, vol. 2, no. 3, pp. 1688–1695, Jul. 2017, issn: 2377-3766. doi: 10.1109/
LRA.2017.2663526.

[101] S. G. Johnson, The nlopt nonlinear-optimization package, 2014.
[102] C. Reardon, K. Lee, and J. Fink, “Come see this! augmented reality to enable

human-robot cooperative search,” in 2018 IEEE International Symposium on
Safety, Security, and Rescue Robotics (SSRR), IEEE, 2018, pp. 1–7.

[103] M. Walker, H. Hedayati, J. Lee, and D. Szafir, “Communicating robot mo-
tion intent with augmented reality,” in Proceedings of the 2018 ACM/IEEE
International Conference on Human-Robot Interaction, ACM, 2018, pp. 316–
324.

[104] O. Erat, W. A. Isop, D. Kalkofen, and D. Schmalstieg, “Drone-augmented
human vision: Exocentric control for drones exploring hidden areas,” IEEE
transactions on visualization and computer graphics, vol. 24, no. 4, pp. 1437–
1446, 2018.

[105] S. Hashimoto, A. Ishida, M. Inami, and T. Igarashi, “Touchme: An augmented
reality based remote robot manipulation,” in The 21st International Confer-
ence on Artificial Reality and Telexistence, Proceedings of ICAT2011, Citeseer,
vol. 2, 2011.

[106] A. Reina, A. J. Cope, E. Nikolaidis, J. A. Marshall, and C. Sabo, “Ark: Aug-
mented reality for kilobots,” IEEE Robotics and Automation letters, vol. 2,
no. 3, pp. 1755–1761, 2017.

[107] A. Antoun, G. Valentini, E. Hocquard, B. Wiandt, V. Trianni, and M. Dorigo,
“Kilogrid: A modular virtualization environment for the kilobot robot,” in
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), IEEE, 2016, pp. 3809–3814.

[108] Y. Ma, S. Soatto, J. Kosecka, and S. S. Sastry, An invitation to 3-d vision:
from images to geometric models. Springer Science & Business Media, 2012,
vol. 26.

111

https://doi.org/10.1109/LRA.2017.2663526
https://doi.org/10.1109/LRA.2017.2663526

[109] M. Faessler, D. Falanga, and D. Scaramuzza, “Thrust mixing, saturation, and
body-rate control for accurate aggressive quadrotor flight,” IEEE Robotics and
Automation Letters, vol. 2, no. 2, pp. 476–482, 2017.

112

	Introduction
	Motivation & Related Work
	Publications
	Contributions
	Organization

	System Architecture
	Overview
	Vehicle In-the-loop Simulation
	Motion Capture Setup
	Time Synchronization
	Dynamic Clock Scaling for Offline Simulation

	Exteroceptive Sensor Simulation
	Photorealistic Sensor Simulation using Photogrammetry
	Photogrammetry Asset Capture Pipeline
	HD Render Pipeline
	Performance Optimizations and System Requirements

	Exteroceptive Sensor Models
	Camera
	Infrared Beacon Sensor
	Time-of-flight Range Sensor

	Applications
	Aircraft-in-the-Loop High-Speed Flight using Visual Inertial Odometry
	Related Work
	UAV System
	Experiments

	Perception-aware Planning
	Related Work
	Experiments

	AlphaPilot Challenge
	Challenge Outline
	Survey of AlphaPilot Simulation Challenge Results

	The Blackbird Dataset: A Large-Scale Dataset for UAV Perception in Aggressive Flight
	Related Work
	Data Collection Setup
	Dataset Format
	Data Validation
	Dataset Generation Methodology
	Benchmarks
	Known Issues

	Collision Avoidance of Dynamic Actors Using Online Perception-aware Planning
	Related Work
	Proposed Algorithm
	Collision Constraint
	Implementation
	Experiments

	Augmented Reality for Aircraft-in-the-loop Experiments
	Related Work
	Latency Compensation using Homographies
	Experiments

	Future Work & Conclusions
	Dynamic Obstacle and Actor Avoidance using Perception-aware Planning
	Sim-to-real Transfer using Augmented Reality
	Conclusions

	Tables
	Blackbird Dataset Benchmarking Flights

	Figures

